Wireless Personal Communications

, Volume 67, Issue 1, pp 25–45 | Cite as

A New QoS Resource Allocation Scheme Using GTS for WPANs

Article

Abstract

IEEE 802.15.4 (for low-rate Wireless Personal Area Networks—WPANs) (IEEE 802.15.4 Standard-2003) and IEEE 802.15.7 (for Short-Range Wireless Optical Communication Using Visible Light) (IEEE 802.15.7 Standard—2011) are two typical standards for WPANs that support Quality-of-Service (QoS) through a Guaranteed Time Slot (GTS) mechanism to allocate a specific duration within a superframe structure for a time division multiplexing transmission. The low bandwidth utilization problem may occur in the GTS mechanism when the allocated bandwidth is less than the available bandwidth. However, this problem has not been resolved thoroughly in any of the standard or current research thus far. This paper analyzes GTS performance in QoS-guaranteed transmission and proposes a new GTS allocation scheme named Unbalanced GTS Allocation Scheme (UGAS), which improves the bandwidth resource efficiency. Our scheme tries to solve the bandwidth under-utilization problem by using Network Calculus theory based on the fluid model and greedy algorithm. The UGAS scheme divides the Contention-Free Period into time slots of different durations to support various bandwidth requirements. Time slots are allocated using an approximation QoS model to minimize under-utilization. Compared with the standard GTS allocation scheme, UGAS makes an efficient bandwidth allocation with the QoS-guaranteed model and without breaking the standard protocol. The numerical results show that the average bandwidth utilization using UGAS can be improved by 30 % as compared with the standard scheme.

Keywords

WPANs Network calculus GTS QoS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IEEE 802.15.4 Standard-2003. (2003). Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs).Google Scholar
  2. 2.
    IEEE 802.15.7 Standard for local and metropolitan area networks. (2011). Part 15.7: Short-range wireless optical communication using visible light.Google Scholar
  3. 3.
    Huang, Y.-K., Pang, A.-C., & Hung, H.-N. (2007). An adaptive GTS allocation scheme for IEEE 802.15.4. Parallel and Distributed Systems, IEEE Transactions on Volume 19, IEEE TPDS.2007.70769 (pp. 641–651).Google Scholar
  4. 4.
    Hong, Y.-G., Kim, H.-J., Park, H.-D., & Kim, D.-H. (2009). Adaptive GTS allocation scheme to support QoS and multiple devices in 802.15.4. Advanced Communication Technology 2009. IEEE ICACT 11th (pp. 1697–1702).Google Scholar
  5. 5.
    Kim, H. S., Song, J.-H., & Lee, S. (2007). Energy efficient traffic scheduling in IEEE802.15.4 for home automation networks. Consumer Electronics 2007, IEEE TCE.2007.381703 (pp. 369–374).Google Scholar
  6. 6.
    Cheng, L., Bourgeois, A. G., & Zhang, X. (2007). A new GTS allocation scheme for IEEE 802.15.4 networks with improved bandwidth utilization. Communications and Information Technologies 2007, IEEE ISCIT.2007.4392189 (pp. 1143–1148).Google Scholar
  7. 7.
    Zhang, H., Xin, S., Yu, R., Lin, Z., & Guo, Y. (2009). An adaptive GTS allocation mechanism in IEEE 802.15.4 for various rate application. Communications and Networking in China 2009, IEEE CHINACOM.2009.5339871 (pp. 1–5).Google Scholar
  8. 8.
    Jurcik, P., Koubaa, A., Alves, M., Tovar, E., & Hanzalek, Z. (2007). A simulation model for the IEEE 802.15.4 protocol: delay/throughput evaluation of the GTS mechanism, modeling, analysis, and simulation of computer and telecommunication systems 2007. IEEE MASCOTS.2007.4 (pp. 109–116).Google Scholar
  9. 9.
    Koubaa, A., Alves, M., & Tovar, E. (2006). GTS allocation analysis in IEEE 802.15.4 for real-time wireless sensor networks. Parallel and Distributed Processing Symposium 2006. IEEE IPDPS.2006.1639415 (pp. 1–8).Google Scholar
  10. 10.
    Cheng, L., Zhang, X., & Bourgeois, A. G. (2007). GTS allocation scheme revisited. Electronics Letters, EL:20071682 (pp. 1005–1006).Google Scholar
  11. 11.
    Huang, Y.-K., Pang, A.-C., & Kuo, T.-W. (2006). AGA: adaptive GTS allocation with low latency and fairness considerations for IEEE 802.15.4. Communication 2006, IEEE ICC.2006.2555695 (pp. 3929–3934).Google Scholar
  12. 12.
    Song, J. K., Ryoo, J.-D., Kim, S. C., Kim, J. W., Kim, H. Y., & Mah, P. S. (2007). A dynamic GTS allocation algorithm in IEEE 802.15.4 for QoS guaranteed real-time applications. Consumer Electronic 2007, IEEE ISCE.2007.4382182 (pp. 192–201).Google Scholar
  13. 13.
    Koubaa, A., Alves, M., & Tovar E. (2007). i-GAME: an implicit GTS allocation mechanism in IEEE 802.15.4 for time-sensitive wireless sensor networks. Proc. of 18th Euromicro Conference on Real-Time Systems 2006, IEEE ECRTS.2006.31 (pp. 356–361).Google Scholar
  14. 14.
    Cheng, L., Bourgeois, A. G., Zhang, X. (2007). A performance comparison study of GTS allocation schemes in IEEE 802.15.4. Future Generation Communication and Networking 2007, IEEE FGCN.2007.31 (pp. 356–361).Google Scholar
  15. 15.
    Leboudec, J.-Y., & Thiran, P. (2001). Network calculus. A Theory of Deterministic Queuing Systems for the Internet, Online Version of the Book Springer Verlag - LNCS 2050.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  1. 1.Department of Electronics EngineeringKookmin UniversitySeoulSouth Korea

Personalised recommendations