Skip to main content

A Mobility Handover Scheme for IPv6-Based Vehicular Ad Hoc Networks

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The paper proposes a mobility handover scheme MHVA for IPv6-based vehicular ad hoc networks. In MHVA, a vehicle is uniquely identified by its home IPv6 address, and it can keep the communication with other nodes without a care-of address during the mobility process. In addition, MHVA adopts an advanced mobility handover mechanism where the mobility handover operation in the network layer is completed before the one in the link layer is performed. As a result, during the advanced mobility handover process, a vehicle can keep the connection with its current associated AP in the link layer, so it can receive the data forwarded by the AP. Therefore, the packet loss rate is reduced, the mobility handover cost is decreased, and the mobility handover delay is shortened. From both the theoretical perspective and simulative perspective, the performance parameters of MHVA are evaluated, and the data results show that the mobility handover cost of MHVA is lower and the mobility handover delay is shorter.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Céspedes S., Shen X., Lazo C. (2011) IP mobility management for vehicular communication networks: Challenges and solutions. IEEE Communications Magazine 49(5): 187–194

    Article  Google Scholar 

  2. 2

    Perkins, C. (2002). IP mobility support for IPv4. RFC 3344.

  3. 3

    Johnson, D., Perkins, C., & Arkko, J. (2004). Mobility support in IPv6. RFC 3775.

  4. 4

    Soliman, H., Castelluccia, C., Malki, K. E., & Bellier, L. (2005). Hierarchical mobile IPv6 mobility management (HMIPv6). RFC 4140.

  5. 5

    Koodli, R. (2008). Fast handovers for mobile IPv6. RFC 5268, June 2008.

  6. 6

    Lee, K.-W., Seo, W.-K., Cho, Y.-Z., Kim, J.-W., Park, J.-S., & Moon, B.-S. (2010). Inter-domain handover scheme using an intermediate mobile access gateway for seamless service in vehicular networks. International Journal of Communication Systems, 23, 1127–1144.

    Google Scholar 

  7. 7

    Kempf, J. (2007). Problem statement for network-based localized mobility management (NETLMM). RFC 4830.

  8. 8

    Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., & Patil, B. (2008). Proxy mobile IPv6. IETF RFC5213.

  9. 9

    Giaretta, G. (2007). Interactions between PMIPv6 and MIPv6: Scenarios and related issues. IETF internet draft-giarettanetlmm-mip-interactions-02.

  10. 10

    Tsirtsis, G., & Krishnan, S. (2008). Behavior of collocated HA/LMA. IETF internet draft-tsirtsis-logically-separate-lmaha-01.

  11. 11

    Weniger, K., Velev, G., & Devarapalli, V. (2008). Data forwarding behaviour of co-llocated HA/LMA in PMIP6-MIP6 interactions scenario C.IETF internet draft-weniger-netlmm-mip-pmip-forwarding-00.

  12. 12

    Neumann, N., Fu, X., Lei, J., & Zhang, G. (2008). Inter-domain handover and data forwarding between proxy mobile IPv6 domains. IETF internet draft-neumann-netlmm-inter-domain-00.

  13. 13

    Na, J.-H., Park, S., Moon, J.-M., Lee, S., Lee, E., & Kim, S.-H. (2008). Roaming mechanism between PMIPv6 domains. IETF internet draft-park-netlmm-pmipv6-roaming-01.

  14. 14

    Gerla M., Kleinrock L. (2011) Vehicular networks and the future of the mobile internet. Computer Networks 55: 457–469

    Article  Google Scholar 

  15. 15

    Chen, Y.-S., Cheng, C.-H., Hsu, C.-S., Cheng, C.-H., Hsu, C.-S., & Chiu, G.-M. (2009). Network mobility protocol for vehicular ad hoc networks. In IEEE wireless communications and networking conference, WCNC2009. Article number:4917830.

  16. 16

    Seow C. K., Tan S. Y. (2008) Localization of omni-directional mobile device in multipath environments. Progress In Electromagnetics Research PIER 85: 323–348

    Article  Google Scholar 

  17. 17

    Peng, R., & Sichitiu, M. L. (2006). Angle of arrival localization for wireless sensor networks. In 2006 3rd annual IEEE communications society on sensor and ad hoc communications and networks (Vol. 1, no. C, pp. 374–382). IEEE.

  18. 18

    Patwari, N., Hero, A., Perkins, M., III, Correal, N., & O’Dea, R. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, Special Issue on Signal Processing Innetworking, 51(8), 2137–2148.

  19. 19

    Zhang L., Cheng Q., Wang Y., Zeadally S. (2008) A novel distributed sensor positioning system using the dual of target tracking. IEEE Transaction on Computers 57: 246–260

    MathSciNet  Article  Google Scholar 

  20. 20

    Xiaonan W., Shan Z., Rong Z. (2012) A mobility support scheme for 6LoWPAN[J]. Computer Communications 35: 392–404

    Article  Google Scholar 

  21. 21

    Reaz, A. S., & Atiquzzaman, M. (2006). P-SIGMA: Paging in end to end mobility management. In IEEE ICC, Istanbul.

  22. 22

    Reaz, A. S., Chowdhury, P. K., Atiquzzaman, M., & Ivancic, W. (2006). Signalling cost analysis of sinemo: Seamless endtoend network mobility. In Proceedings of the first ACM/IEEE international workshop on mobility in the evolving internet architecture (MobiArch 2006) (pp. 37–42). San Francisco.

  23. 23

    Baia F., Sadagopanb N., Helmya A. (2003) The IMPORTANT framework for analyzing the impact of mobility on performance of routing protocols for adhoc networks. Ad Hoc Networks 1(4): 383–403

    Article  Google Scholar 

  24. 24

    Chang, Y.-T., Ding, J.-W., Ke, C.-H., & Chen, I.-Y. (2010). A survey of handoff schemes for vehicular ad-hoc networks. In Proceedings of the 6th international wireless communications and mobile computing conference. doi:10.1145/1815396.1815677.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaonan Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, X., Qian, H. A Mobility Handover Scheme for IPv6-Based Vehicular Ad Hoc Networks. Wireless Pers Commun 70, 1841–1857 (2013). https://doi.org/10.1007/s11277-012-0784-2

Download citation

Keywords

  • Vehicular ad hoc network
  • Mobility handover
  • IPv6
  • Access point
  • Home address