SER Computation in M-QAM Systems with Phase Noise

Abstract

This paper presents an exact closed-form expression for the symbol error rate of the square and rectangular quadrature amplitude modulation (QAM) constellations, under the assumption that the transmitted and/or received signals are corrupted by the phase noise fluctuation. Phase noise is one of the most important radio frequency (RF) imperfections which usually comes from the local oscillator (LO) at the transmitter and/or receiver. In this paper, the additive white Gaussian noise (AWGN) channel is assumed. Although AWGN is a simple channel, but our exact analysis of the symbol error rate in this paper can be led to the precise study of the real communication systems in the fading channel. Hence, an exact closed-form solution for the symbol error rate is derived here as a finite summation of the two-dimensional Q-function and verified by the simulation.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Lee T. H., Hajimiri A. (2000) Oscillator phase noise: A tutorial. IEEE Journal of Solid-State Circuits 35(3): 326–336

    Article  Google Scholar 

  2. 2

    Madani M. H., Abdipour A., Mohammadi A. (2011) Analytical performance evaluation of the OFDM systems in the presence of jointly fifth order nonlinearity and phase noise. Springer, Analog Integrated Circuits and Signal Process 66(1): 103–115

    Article  Google Scholar 

  3. 3

    Hajimiri A., Limotyrakist S., Lee T. H. (1999) Jitter and phase noise in ring oscillators. IEEE Journal of Solid-State Circuits 34(6): 790–804

    Article  Google Scholar 

  4. 4

    Kouznetsov K. A., Meyer R. G. (2000) Phase noise in LC oscillators. IEEE Journal of Solid-State Circuits 35(8): 1244–1248

    Article  Google Scholar 

  5. 5

    Yih C. H. (2011) BER analysis of OFDM systems impared by phase noise in frequency selective fading channels. Springer, Wireless Personal Communication 59(4): 667–687

    Article  Google Scholar 

  6. 6

    Madani M. H., Abdipour A., Mohammadi A. (2010) Analysis of performance degradation due to non-linearity and phase noise in orthogonal frequency division multiplexing systems. IET Communications 4(10): 1226–1237

    MathSciNet  Article  Google Scholar 

  7. 7

    Liu G., Zhu W. (2007) Phase noise effects and mitigation in OFDM systems over Rayleigh fading channels. Springer, Wireless Personal Communication 41(2): 243–258

    Article  Google Scholar 

  8. 8

    Tubbax J., Come B., Van Der Perre L., Donnay S., Engels M., De Man H., Moonen M. (2005) Compensation of IQ imbalance and phase noise in OFDM systems. IEEE Transaction on Wirelss Communication 4(3): 872–877

    Article  Google Scholar 

  9. 9

    Taparugssanagorn A., Ylitalo J. (2009) Characteristics of short-term phase noise of MIMO channel sounding and its effect capacity estimation. IEEE Transaction on Instrumentation Measurement 58(1): 196–201

    Article  Google Scholar 

  10. 10

    Hohne T., Ranki V. (2010) Phase noise in beamforming. IEEE Transaction on Wireless Communication 9(12): 3682–3689

    Article  Google Scholar 

  11. 11

    Bougeard S., Helard J. F., Siaud I. (2006) Performance optimization of high order QAM in presence of phase noise and AWGN: Application to a decision directed frequency synchronization system. Springer, Wireless Personal Communication 37(1-2): 123–138

    Article  Google Scholar 

  12. 12

    Georgiadis A. (2004) Gain, phase imbalance and phase noise effects on error vector magnitude. IEEE Transaction on Vehicular Technology 53(2): 443–449

    MathSciNet  Article  Google Scholar 

  13. 13

    Chen Z. Q., Dai F. F. (2010) Effects of LO phase and amplitude imbalances and phase noise on M-QAM transceiver performance. IEEE Transaction on Industrial Electronics 57(5): 1505–1517

    Article  Google Scholar 

  14. 14

    Razavi B. (1998) RF microelectronics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  15. 15

    Mohammadi, A., Shayegh, F., Abdipour, A. & Mirzavand, R. (2007). Direct conversion EHM transceivers design for millimeter-wave wireless applications. EURASIP Journal on Wireless Communications and Networking, 2007(1), 1–9.

  16. 16

    Proakis J. G. (2000) Digital communications. McGraw-Hill, New York

    Google Scholar 

  17. 17

    Papoulis A., Pillai U. (2001) Probability, random variables and stochastic processes. McGraw-Hil, New York

    Google Scholar 

  18. 18

    Craig, J. W. (1991). A new, simple and exact result for calculating the proba-bility of error for two-dimensional signal constellations. In: Proceedings of IEEE MILCOM (Vol. 2, pp. 571–575). McLean, VA, Nov. 1991.

  19. 19

    Beaulieu N. C. (2006) A Useful integral for wireless communication theory and its application to rectangular signaling constellation error rates. IEEE Transaction on Communication 54(5): 802–805

    Article  Google Scholar 

  20. 20

    Simon M. K. (2002) A simpler form of the Craig representation for the two-dimensional joint Gaussian Q-function. IEEE Communication Letters 6(2): 49–51

    Article  Google Scholar 

  21. 21

    Sadiku M. O. (2000) Numerical techniques in electromagnetics. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abbas Mohammadi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lari, M., Mohammadi, A., Abdipour, A. et al. SER Computation in M-QAM Systems with Phase Noise. Wireless Pers Commun 70, 1575–1587 (2013). https://doi.org/10.1007/s11277-012-0766-4

Download citation

Keywords

  • Phase noise
  • Quadrature amplitude modulation
  • RF imperfections
  • Symbol error rate