Skip to main content

Modeling the Beaconing Mechanism in Short Range Wireless Networks Based on the DRP Protocol in Outdoor Environments


A probabilistic method is developed here to model the beacon period length (BPL) defined in the ECMA-368 and ECMA-387 standards for the distributed reservation protocol. The model computes the probability mass function (PMF) of the BPL in a superframe which will be used in modeling of throughput, delay, fairness, power and other major distributed medium access control layer parameters of the emerging ultra wideband and 60- GHz millimeter wave wireless personal area networks. The model relates the PMF of the BPL to the network density, antenna beamwidth, and the transmission range of the devices assuming that the devices are distributed in an outdoor environment based on Two-dimensional Poisson distribution. The proposed model is evaluated by simulating different scenarios in the network and the results show that on average, the model for the average BPL has an absolute error of 1.57 %.

This is a preview of subscription content, access via your institution.


  1. 1

    Al-Zubi R., Krunz M. (2010) Interference management and rate adaptation in ofdm-based uwb networks. IEEE Transactions on Mobile Computing 9(9): 1267–1279

    Article  Google Scholar 

  2. 2

    Fan Z. (2009) Bandwidth allocation in UWB WPANs with ECMA-368 MAC. Computer Communications 32(5): 954–960

    Article  Google Scholar 

  3. 3

    Genc Z., Rizvi U., Onur E., Niemegeers I. (2010) Cooperative communications in future home networks. Wireless Personal Communications 53: 349–364

    Article  Google Scholar 

  4. 4

    Gilbert J. M., Doan C. H., Emami S., Shung C. B. (2008) A 4-Gbps uncompressed wireless HD A/V transceiver chipset. IEEE Micro 28(2): 56–64

    Article  Google Scholar 

  5. 5

    Halunga S. V., Vizireanu D. N. (2010) Performance evaluation for conventional and mmse multiuser detection algorithms in imperfect reception conditions. Digital Signal Processing, Elsevier 20: 166–178

    Article  Google Scholar 

  6. 6

    Halunga S. V., Vizireanu D. N., Fratu O. (2010) Imperfect cross-correlation and amplitude balance effects on conventional multiuser decoder with turbo encoding. Digital Signal Processing, Elsevier 20: 191–200

    Article  Google Scholar 

  7. 7

    High Rate Ultra Wideband PHY and MAC Standard, 3rd edition (2008).

  8. 8

    High Rate 60 GHz PHY, MAC and HDMI PAL, 1st edition (2008).

  9. 9

    Hu C., Kim H., Hou J., Chi D., Ssai Shankar N. (2010) A distributed approach of proportional bandwidth allocation for real-time services in ultrawideband (uwb) wpans. IEEE Transactions on Parallel and Distributed Systems 21(11): 1626–1643

    Article  Google Scholar 

  10. 10

    Joo Y.-I., Hur K. (2011) A multi-hop resource reservation scheme for seamless real-time qos guarantee in wimedia distributed mac protocol. Wireless Personal Communications 60(4): 583–597

    Article  Google Scholar 

  11. 11

    Khalil A., Crussiere M., Helard J. F. (2011) Adaptive self-learning resource allocation scheme for unlicensed users in high-rate uwb systems. Wireless Personal Communications 56: 611–623

    Article  Google Scholar 

  12. 12

    Ma, C., & Mehmet-Ali, M. (2010). A performance modeling of wimedia uwb mac. In 25th Biennial symposium on communications (QBSC), 2010, pp. 461–466.

  13. 13

    Park C., Rappaport T. S. (2007) Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee. IEEE Wireless Communications Magazine 14(4): 70–78

    Article  Google Scholar 

  14. 14

    Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs)—Amendment 2: Alternative physical layer extension to support one or more of the Chinese 314–316 MHz, 430–434 MHz, and 779–787 MHz bands(2009).

  15. 15

    Rajamani, K., Soliman, S., Dural, O., & Rajkotia, A. (2008). Mac performance for second generation uwb. In IEEE international conference on Ultra-Wideband, 2008 (ICUWB 2008), vol. 1, pp. 237–240.

  16. 16

    Sobel D. A., Brodersen R. W. (2009) A 1 Gb/s mixed-signal baseband analog front-end for a 60 GHz wireless receiver. IEEE Journal of Solid-State Circuits 44(4): 1281–1289

    Article  Google Scholar 

  17. 17

    Tomkins A., Aroca R. A., Yamamoto T., Nicolson S. T., Doi Y., Voinigescu S.P. (2009) A zero-IF 60 GHz 65 nm CMOS transceiver with direct BPSK modulation demonstrating up to 6 Gb/s data rates over a 2 m wireless link. IEEE Journal of Solid-State Circuits 44(8): 2009–2085

    Article  Google Scholar 

  18. 18

    WirelessHD Specification Overview, Version 1.0a (2009).

  19. 19

    Wong, D., Chin, F., Shajan, M., & Chew, Y. (2007). Performance analysis of saturated throughput of pca in the presence of soft drps in wimedia mac. In IEEE 65th vehicular technology conference, 2007 (VTC2007-Spring)., pp. 1275–1281.

  20. 20

    Wong, D., Chin, F., Shajan, M., & Chew, Y. H. (2008). Saturated throughput of burst mode pca with hard drps in wimedia mac. In IEEE Wireless communications and networking conference, 2008 (WCNC 2008), pp. 1645–1650.

  21. 21

    Yen L., Law Y., Palaniswami M. (2011) Risk-aware distributed beacon scheduling for tree-based zigbee wireless networks. IEEE Transactions on Mobile Computing 11(4): 692–703

    Google Scholar 

  22. 22

    Zhang F., Skafidas E., Shieh W. (2008) 60 GHz double-balanced up-conversion mixer on 130 nm CMOS technology. IET Electronics Letters 44(10): 633–634

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hossein Ajorloo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ajorloo, H., Manzuri-Shalmani, M.T. Modeling the Beaconing Mechanism in Short Range Wireless Networks Based on the DRP Protocol in Outdoor Environments. Wireless Pers Commun 70, 831–846 (2013).

Download citation


  • Beacon period length
  • Distributed reservation protocol
  • Medium access control
  • Ultra wideband
  • 60- GHz mmWave
  • Wireless personal area network