Skip to main content
Log in

Iterative Frequency-Domain Packet Combining Techniques for UWB Systems with Strong Interference Levels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

UWB (Ultra Wideband) systems tend to suffer strong interference from signals that occupy a significant part of the transmission band. This is an important constraint, especially when the channel remains fixed for a long period of time. In order to overcome this limitation, this paper considers UWB systems employing Single-Carrier with Frequency-Domain Equalization techniques. We propose the corresponding receiver, which also allows the soft packet combining associated to different Automatic Repeat ReQuest transmission attempts, as a measure to improve the performance through the exploitation of diversity. Our techniques are able to cope with strong interference levels as well as deep fading, even for fixed channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen, X., Guizani, M, Qiu, R. C., & Le-Ngoc, T. (2006). Ultra-wideband - wireless communications and networks. N.J., USA: Wiley.

  2. Win M., Scholtz R. (1998) On the robustness of ultra-wide bandwidth signals in dense multipath environments. IEEE Communications Letters. 2(2): 10–12

    Google Scholar 

  3. Ramrez-Mireles F., Scholtz R. (2001) On the performance of ultra- wide-band signals in Gaussian noise and dense multipath. IEEE Transactions on Vehicular Technology. 50(1): 244–249

    Article  Google Scholar 

  4. Siwiak K. (2001) Impact of ultra wide band transmissions on a generic receiver. IEEE VTC’ 01(Spring) 2: 1181–1183

    Google Scholar 

  5. Luediger H., Zeisberg S. (2000) User and business perspectives on an open mobile access standard. IEEE Commmunications Magazine 38(9): 160–163

    Article  Google Scholar 

  6. Win M., Scholtz R. (1998) Impulse radio: How it works. IEEE Communications Letters, 2(2): 36–38

    Article  Google Scholar 

  7. Win M., Scholtz R. (2000) Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications 48(4): 679–689

    Article  Google Scholar 

  8. Ishiyama, Y., & Ohtsuki, T. (2004). Performance evaluation of UWBIR and DS-UWB with MMSE-frequency domain equalization (FDE). IEEE GLOBECOM’04.

  9. Popescu, D., Yaddanapudi, P., & Kondadasu, R. (2005). OFDM versus time-hopping in multiuser ultra wideband communication systems. IEEE VTC’05 (Spring).

  10. Gusmão, A., Dinis, R., Conceição, J., & Esteves, N. (2000). Comparison of two modulation choices for broadband wireless communications. IEEE VTC’00 (Spring), Tokyo, Japan.

  11. Falconer D., Ariyavisitakul S., Benyamin-Seeyar A., Eidson B. (2002) Frequency domain equalization for single-carrier broadband wireless systems. IEEE Communications Magazine 4(4): 58–66

    Article  Google Scholar 

  12. Dinis, R., Gusmão, A., & Esteves, N. (2003). On broadband block transmission over strongly frequency-selective fading channels. In Proceedings of Wireless 2003, Calgary, Canada.

  13. Montezuma, P., & Gusmão, A. (2001). A pragmatic coded modulation choice for future broadband wireless communications. IEEE VTC’2001(Spring), Rhodes, Greece.

  14. Benvenuto N., Dinis R., Falconer D., Tomasin S. (2010) Single carrier modulation with non linear frequency domain equalization: An idea whose time has come—again. IEEE Proceedings 98(1): 69–96

    Article  Google Scholar 

  15. Benvenuto N., Tomasin S. (2002) Block iterative DFE for single carrier modulation. IEE Electronics Letters 39(19): 1144–1145

    Article  Google Scholar 

  16. Gusmão A., Dinis R., Esteves N. (2003) On frequency-domain equalization and diversity combining for broadband wireless communications. IEEE Transactions on Communications 51(7): 1029–1033

    Article  Google Scholar 

  17. Vucetic B., Yuan J. (2002) Turbo codes: Principles and applications. Kluwer, Dordrecht

    Google Scholar 

  18. Dinis R., Kalbasi R., Falconer D., Banihashemi A. (2004) Iterative layered space–time receivers for single-carrier transmission over severe time-dispersive channels. IEEE Communications Letters 8(9): 579–581

    Article  Google Scholar 

  19. Marques da Silva, M., Correia, A., Dinis, R., Souto, N., & Silva, J. (2010). Transmission techniques for emergent multicast and broadcast systems (1st ed.). New York, USA: CRC Press Auerbach Publications. ISBN:9781439815939.

  20. Gusmão, A., Torres, P., Dinis, R., & Esteves, N. (2006). A class of iterative FDE techniques for reduced-CP SC-based block transmission. In International symposium on turbo codes.

  21. Hagenauer J. et al (1988) Rate-compatible punctured convolutional codes (RCPC Codes) and their application. IEEE Transactions on Communications 36(4): 389–400

    Article  Google Scholar 

  22. Gusmão, A., Dinis, R., & Esteves, N. (1999). Adaptive HARQ schemes using punctured RR codes for ATM-compatible broadband wireless communications. IEEE VTC’99 (Fall), Amsterdam, The Netherlands.

  23. Dinis, R., & Gusmão, A. (1998). Transmission techniques for increased power efficiency in OFDM-based wireless communication systems. IEEE RAWCON’98, Colorado Springs, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário Marques da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques da Silva, M., Dinis, R. & Montezuma, P. Iterative Frequency-Domain Packet Combining Techniques for UWB Systems with Strong Interference Levels. Wireless Pers Commun 70, 501–517 (2013). https://doi.org/10.1007/s11277-012-0704-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0704-5

Keywords

Navigation