Wireless Personal Communications

, Volume 70, Issue 1, pp 283–293 | Cite as

A Novel Lattice Reduction Precoding Method

  • Hyunwook Yang
  • Jinho Choi
  • Seungwon Choi
  • Jangwoo Kwon
Article
  • 208 Downloads

Abstract

In this work, a novel lattice reduction (LR) precoding method is proposed. The technique combines conventional LR precoding with a method of reducing the singular value coefficients of the LR-reduced basis matrix. The performance of the new technique was comparable to that of sphere encoding, while its complexity was lower than that of other sub-optimal methods.

Keywords

MU-MIMO Precoding Lattice reduction Power efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldsmith A., Jafar S. A., Jindal N., Vishwanath S. (2003) Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications 21(5): 684–702CrossRefGoogle Scholar
  2. 2.
    Gesbert D., Kountouris M., Heath R. W. Jr., Chae C-B., Sälzer T. (2007) Shifting the MIMO paradigm. IEEE Signal Processing Magazine 24: 36–46CrossRefGoogle Scholar
  3. 3.
    Fischer, R. F. H., Windpassinger C., Lampre A., & Huber J. B. (2002). MIMO precoding for decentralized receivers. In Proceedings IEEE international symposium on information theory (p. 496). Lausanne, Switzerland. June/July 2002.Google Scholar
  4. 4.
    Costa M. H. M. (1983) Writing on dirty pape. IEEE Transaction on Information Theory 29(3): 439–441MATHCrossRefGoogle Scholar
  5. 5.
    Peel C. B., Hochwald B. M., Swindlehurst A. L. (2005) A vector-perturbation technique for near-capacity multiantenna multiuser communication-part II: Perturbation. IEEE Transactions on Communications 53(1): 537–544CrossRefGoogle Scholar
  6. 6.
    Ryan D. J., Collings I. B., Vaughan I., Clarkson L., Heath R. W. Jr. (2009) Performance of vector perturbation multiuser MIMO systems with limited feedback. IEEE Transactions on Communications 57: 2633–2644CrossRefGoogle Scholar
  7. 7.
    Windpassinger, C., Vencel, T., & Fisher, R. F. H. (2003). Precoding and loading for BLAST-like systems. In IEEE international conference Communications 2003. (Vol. 5, pp. 3061–3065), May 2003.Google Scholar
  8. 8.
    Windpassinger C., Fischer R. F. H., Huber J. B. (2004) Lattice-reduction-aided broadcast precoding. Communications, IEEE Transactions 52: 2057–2060CrossRefGoogle Scholar
  9. 9.
    Vetter, H., & Ponnampalam, V. (2009). Near-optimum vector perturbation precoding using a candidate list. In Proceedings of IEEE WCNC. April 2009.Google Scholar
  10. 10.
    Cha J., Park K., Kang J., Park H. (2008) Low complexity tree searching-based iterative precoding techniques for multiuser MIMO broadcast channel. IEICE Transactions Communications E91-B(6): 2045–2048Google Scholar
  11. 11.
    Rico, U. P., Alsusa, E., & Masouros, C. (November 2008). A fast least-squares solution-seeker algorithm for vector-perturbation. In Global Telecommunications Conference, 2008. IEEE (pp. 1–5).Google Scholar
  12. 12.
    Lenstra A. K., Lenstra H. W., Lovász L. (1982) Factoring polynomials with rational coefficients. Mathematische Annalen 261: 515–534MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Golub G. H., Van Loan C. F. (1996) Matrix Computations. The Johns Hopkins University Press, BaltimoreMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Hyunwook Yang
    • 1
  • Jinho Choi
    • 2
  • Seungwon Choi
    • 1
  • Jangwoo Kwon
    • 3
  1. 1.School of Electrical and Computer EngineeringHanyang UniversitySeoulSouth Korea
  2. 2.College of EngineeringSwansea UniversitySwanseaUK
  3. 3.Department of Computer and Information EngineeringInha UniversityIncheonSouth Korea

Personalised recommendations