Skip to main content
Log in

Wireless Underwater Communications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The depths of the oceans have a high potential for future industrial development and applications. Robotic autonomous systems will greatly depend on a reliable communications channel with operators and equipment either performing joint operations or on the surface. However, communications must face harsh conditions that hinder the performance. Neither electromagnetic nor optical technologies are suitable for communication because of their short range in this medium. Due to this, acoustic equipment is envisaged as the most appropriate technology, even though it suffers several negative effects such as strong attenuation at high (ultrasonic) frequencies, Doppler shifts and a time-varying multipath. In this paper, we describe the characteristics of the acoustic underwater channel and how it impacts the mechanisms at the link and network layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 3rd Generation Partnership Project (3GPP) 36.104, Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception.

  2. Akyildiz I. F., Pompili D., Melodia T. (2005) Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks 3: 257–279

    Article  Google Scholar 

  3. Brekhovskikh L. M., Lysanov Y. P. (2003) Fundamentals of ocean acoustics, 3rd ed. Springer, New York

    Google Scholar 

  4. Carlson, E. A., Beaujean, P. P., & An, E. (2006). Location-aware routing protocol for underwater acoustic networks,OCEANS, pp. 1–6.

  5. Chitre, M., Shahabudeen, S., Freitag, L., Stojanovic, M. (2008). Recent advances in underwater acoustic communications & networking. OCEANS.

  6. Entrambasaguas, J. T., Aguayo-Torres, M. C., Poncela, J., & Gómez, G. (2009, May). Role of convergence in GIMCV development: A vision. Wireless Personal Communications, pp. 321–324.

  7. Foo, K. Y., Atkins, P. R., Collins, T., Morley, C., & Davies, J. (2004). A routing and channel-access approach for an ad hoc underwater acoustic networks. MTS/IEEE OCEANS ’04, pp. 789–795 Vol. 2.

  8. Frassati F., Lafon C., Laurent P.-A., Passerieux J.-M. (2005) Experimental assessment of OFDM and DSSS modulations for use in littoral waters underwater acoustic communications. Oceans 2005—Europe 2: 826–831

    Google Scholar 

  9. Hobart E., Allsup G., Hosom D., Baldasarre T. (2000) Acoustic modem unit. Proceedings of IEEE Oceans Conference 2: 769–772

    Google Scholar 

  10. Huang, J., Zhou, S., Huang, J., Berger, C. R., & Willett, P. Progressive inter-carrier interference equalization for OFDM transmission over time-varying underwater acoustic channels. IEEE Journal of Selected Topics in Signal Processing (to appear).

  11. Iltis R., Lee H., Kastner R., Doonan D., Fu T., Moore R., Chin M. (2005) An underwater acoustic telemetry modem for eco-sensing. Proceedings of IEEE Oceans Conference 2: 1844–1850

    Google Scholar 

  12. Kun, Z., Sen, Q. S., Aik, K. T., Aik, T. B. (2007). A real-time coded OFDM acoustic modem in very shallow underwater communications. OCEANS 2006—Asia Pacific, pp. 1–5.

  13. Li B., Zhou S., Stojanovic M., Freitag L., Willett P. (2008) Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts. IEEE Journal of Oceanic Engineering 33(2): 198–209

    Article  Google Scholar 

  14. Mackenzie K. V. (1981) Discussion of sea-water sound-speed determinations. Journal of the Acoustical Society of America 70(3): 801–806

    Article  Google Scholar 

  15. Mason S. F., Berger C. R., Zhou S., Willett P. (2008) Detection, synchronization, and Doppler scale estimation with multicarrier waveforms in underwater acoustic communication. IEEE Journal on Selected Areas in Communications 26(9): 1638–1649

    Article  Google Scholar 

  16. Morris J. M. (1979) Optimal blocklengths for ARQ error control schemes. IEEE Transactions on Communication 27: 488–493

    Article  Google Scholar 

  17. Preisig J. (2007) Acoustic propagation considerations for underwater acoustic communications network development. ACM SIGMOBILE Mobile Computing Communications Review 11(4): 2–10

    Article  Google Scholar 

  18. Qarabaqi, P., & Stojanovic, M. (2009). Statistical modeling of a shallow water acoustic communication channel (invited paper). In Proceedings of 3rd underwater acoustic measurements conference, Nafplion, Greece.

  19. Radosevic, A., Proakis, J., & Stojanovic, M. (2009). Statistical characterization and capacity of shallow water acoustic channels. IEEE Oceans Europe Conference.

  20. Rice, J., Creber, B., Fletcher, C., & Baxley, P. et al (2000). Evolution of Seaweb underwater acoustic networking. OCEANS 2000 MTS/IEEE.

  21. Scussel K. F., Rice J. A., Merriam S. (1997) A new mfsk acoustic modem for operation in adverse underwater channels. Proceedings of IEEE Oceans Conference 1: 247–254

    Article  Google Scholar 

  22. Sharif B. S., Neasham J., Hinton O. R., Adams A. E. (2000) A computationally efficient Doppler compensation system for underwater acoustic communications. IEEE Journal of Oceanic Engineering 25(1): 52–61

    Article  Google Scholar 

  23. Sozer E. M. (2005) Simulation and rapid prototyping environment for underwater acoustic communications: Reconfigurable modem. Proceedings of IEEE Oceans Europe Conference 1: 80–85

    Google Scholar 

  24. Stojanovic, M. (2005). Optimization of a data link protocol for an underwater acoustic channel. Proceedings of IEEE OCEANS’05 conference.

  25. Stojanovic, M. (2008). OFDM for underwater acoustic communications: Adaptive synchronization and sparse channel estimation. IEEE international conference on acoustics, speech and signal processing, ICASSP 2008, pp. 5288–5291.

  26. Stojanovic M., Preisig J. (2009) Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine 47(1): 84–89

    Article  Google Scholar 

  27. Syed A., Ye W., Heidemann J. (2008) Comparison and evaluation of the T-Lohi MAC for underwater acoustic sensor networks. IEEE Journal on Selected Areas in Communications 26(9): 1731–1743

    Article  Google Scholar 

  28. van de Beek, J., Ödling, P., Wilson, S. & Börjesson, P. (2002). Review of Radio Science, 1996–1999, Orthogonal Frequency Division Multiplexing (OFDM). Wiley: London.

  29. Wong, Y. F., Ngoh, L. H., Wong, W. C., & Seah, W. K. G. (2006). Intelligent sensor monitoring for industrial underwater applications. IEEE International Conference on Industrial Informatics, pp. 144–149.

  30. Yang W. B., Yang T. C. (2006) High-frequency channel characterization for M-ary frequency-shift-keying underwater acoustic communications. Journal of Acoustic Society of America 120(5): 2615–2626

    Article  Google Scholar 

  31. Zorzi M., Casari P., Baldo N., Harris A.F. III (2008) Energy-efficient routing schemes for underwater acoustic networks. IEEE Journal on Selected Areas in Communications 26(9): 1754–1766

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Poncela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poncela, J., Aguayo, M.C. & Otero, P. Wireless Underwater Communications. Wireless Pers Commun 64, 547–560 (2012). https://doi.org/10.1007/s11277-012-0600-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0600-z

Keywords

Navigation