Skip to main content
Log in

Analysis of Cubic Permutation Polynomials for Turbo Codes

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Quadratic permutation polynomials (QPPs) have been widely studied and used as interleavers in turbo codes. However, less attention has been given to cubic permutation polynomials (CPPs). This paper proves a theorem which states sufficient and necessary conditions for a cubic permutation polynomial to be a null permutation polynomial. The result is used to reduce the search complexity of CPP interleavers for short lengths (multiples of 8, between 40 and 352), by improving the distance spectrum over the set of polynomials with the largest spreading factor. The comparison with QPP interleavers is made in terms of search complexity and upper bounds of the bit error rate (BER) and frame error rate (FER) for AWGN and for independent fading Rayleigh channels. Cubic permutation polynomials leading to better performance than quadratic permutation polynomials are found for some lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takeshita Y. O. (2007) Permutation polynomial interleavers: An algebraic-geometric perspective. IEEE Transactions on Information Theory 53(6): 2116–2132

    Article  MathSciNet  Google Scholar 

  2. Sun J., Takeshita Y. O. (2005) Interleavers for turbo codes using permutation polynomial over integers rings. IEEE Transactions on Information Theory 51(1): 101–119

    Article  MathSciNet  Google Scholar 

  3. Takeshita Y. O. (2006) On maximum contention-free interleavers and permutation polynomials over integers rings. IEEE Transactions on Information Theory 52(3): 1249–1253

    Article  MathSciNet  Google Scholar 

  4. Ryu J., Takeshita Y. O. (2006) On quadratic inverses for quadratic permutation polynomials over integers rings. IEEE Transactions on Information Theory 52(3): 1254–1260

    Article  MathSciNet  Google Scholar 

  5. Tărniceriu D., Trifina L., Munteanu V. (2009) About minimum distance for QPP interleavers. Annals of Telecommunications 64(11-12): 745–751

    Article  Google Scholar 

  6. Rosnes, E., & Takeshita, Y. O. (2006). Optimum distance quadratic permutation polynomial-based interleavers for turbo codes. In Proceedings of IEEE international symposium on information theory, Seattle, USA, 1988–1992.

  7. 3GPP TS 36.212 V8.3.0 (2008-05). 3rd generation partnership project, multiplexing and channel coding (Release 8).

  8. Zhao H., Fan P., Tarokh V. (2010) On the equivalence of interleavers for turbo codes using quadratic permutation polynomials over integer rings. IEEE Communications Letters 14(3): 236–238

    Article  Google Scholar 

  9. Li, S. (2008). Null polynomials modulo m. Online available: http://arxiv.org/PS_cache/math/pdf/0509/0509523v6.pdf, 26 p. (last revised).

  10. Trifina, L., Tărniceriu, D., Munteanu, V. (2011). Improved QPP interleavers for LTE standard. In IEEE international symposium on signals, circuits and systems ISSCS 2011 (pp. 403–406). Iasi, Romania.

  11. Chen Y.-L., Ryu J., Takeshita O. Y. (2006) A simple coefficient test for cubic permutation polynomials over integer rings. IEEE Communications Letters 10(7): 549–551

    Article  Google Scholar 

  12. Zhao H., Fan P. (2007) A note on a simple coefficient test for cubic permutation polynomials over integer rings. IEEE Communications Letters 11(12): 991

    Article  Google Scholar 

  13. Hardy G. H., Wright E. M. (1995) An introduction to the theory of numbers, 4th ed. Oxford University Press, Oxford

    Google Scholar 

  14. Divsalar, D., Pollara, F. (1995). Turbo codes for PCS applications. In Proceedings of international conference on communications 1995 (pp. 54–59). Seattle, WA.

  15. Benedetto S., Biglieri E. (1999) Principles of digital transmission: With wireless applications. Plenum, New York

    MATH  Google Scholar 

  16. Proakis J. G. (1995) Digital communications, 3rd ed. McGraw-Hill, New York

    Google Scholar 

  17. Yuan J., Feng W., Vucetic B. (2002) Performance of parallel and serial concatenated codes on fading channels. IEEE Transactions on Communications 50(10): 1600–1608

    Article  Google Scholar 

  18. Garello R., Pierleoni P., Benedetto S. (2001) Computing the free distance of turbo codes and serially concatenated codes with interleavers: Algorithms and applications. IEEE Journal on Selected Areas in Communications 19(5): 800–812

    Article  Google Scholar 

  19. http://www.tlc.polito.it/garello/turbodistance/turbodistance.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Tarniceriu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trifina, L., Tarniceriu, D. Analysis of Cubic Permutation Polynomials for Turbo Codes. Wireless Pers Commun 69, 1–22 (2013). https://doi.org/10.1007/s11277-012-0557-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0557-y

Keywords

Navigation