Skip to main content
Log in

The Impact of Shadowing and the Severity of Fading on the First and Second Order Statistics of the Capacity of OSTBC MIMO Nakagami-Lognormal Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This article presents a thorough statistical analysis of the capacity of orthogonal space-time block coded (OSTBC) multiple-input multiple-output (MIMO) Nakagami- lognormal (NLN) channels. The NLN channel model allows to study the joint effects of fast fading and shadowing on the statistical properties of the channel capacity. We have derived exact analytical expressions for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades (ADF) of the capacity of MIMO NLN channels. It is observed that an increase in the MIMO dimension or a decrease in the severity of fading results in an increase in the mean channel capacity, while the variance of the channel capacity decreases. On the other hand, an increase in the shadowing standard deviation increases the spread of the channel capacity, however the shadowing effect has no influence on the mean channel capacity. We have also presented approximation results for the statistical properties of the channel capacity, obtained using the Gauss-Hermite integration method. It is observed that approximation results not only reduce the complexity, but also have a very good fitting with the exact results. The presented results are very useful and general because they provide the flexibility to study the impact of shadowing on the channel capacity under different fading conditions. Moreover, the effects of severity of fading on the channel capacity can also be studied. The correctness of theoretical results is confirmed by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng L., Tse D. N. C. (2003) Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory 49: 1073–1096

    Article  MATH  Google Scholar 

  2. Tarokh V., Seshadri N., Calderbank A. R. (1998) Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory 44(2): 744–765

    Article  MathSciNet  MATH  Google Scholar 

  3. Alamouti S. M. (1998) A simple transmit diversity technique for wireless communications. IEEE Journal on Selected areas in Communications 16(8): 1451–1458

    Article  Google Scholar 

  4. Tarokh V., Jafarkhani H., Calderbank A. R. (1999) Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 45(5): 1456–1467

    Article  MathSciNet  MATH  Google Scholar 

  5. Larsson E. G., Stoica P. (2003) Space-time block coding for wireless communications. Cambridge University Press, New York, NY

    Book  MATH  Google Scholar 

  6. Chen J., Du Z., Gao X. (2008) Approximate capacity of OSTBC-OFDM in spatially correlated MIMO Nakagami-m fading channels. Electronics Letters 44(8): 534–535

    Article  Google Scholar 

  7. Musavian L., Dohler M., Nakhai M. R., Aghvami M. H. (2004) Closed-form capacity expressions of orthogonalized correlated MIMO channels. IEEE Communications Letters 8(6): 365–367

    Article  Google Scholar 

  8. Yang L. (2008) Outage performance of OSTBC in double scattering MIMO channels. Wireless Personal Communications 45(2): 225–230

    Article  Google Scholar 

  9. Zhang H., Gulliver T. A. (2005) Capacity and error probability analysis for orthogonal space-time block codes over fading channels. IEEE Transaction on Wireless Communications 4(2): 808–819

    Article  Google Scholar 

  10. Maaref A., Aïssa S. (2006) Performance analysis of orthogonal space-time block codes in spatially correlated MIMO Nakagami fading channels. IEEE Transaction on Wireless Communications 5(4): 807–817

    Article  Google Scholar 

  11. Rafiq, G., Pätzold, M., & Kontorovich, V. (2009). The influence of spatial correlation and severity of fading on the statistical properties of the capacity of OSTBC Nakagami-m MIMO channels. In Proceedings IEEE 69th vehicular technology conference, IEEE VTC 2009-Spring. Barcelona, Spain.

  12. Jakes, W. C. (eds) (1994) Microwave mobile communications. IEEE Press, Piscataway, NJ

    Google Scholar 

  13. Stüber G. L. (2001) Principles of mobile communications. Kluwer Academic Publishers, Boston, MA

    Google Scholar 

  14. Pätzold M., Killat U., Laue F. (1998) An extended Suzuki model for land mobile satellite channels and its statistical properties. IEEE Transactions on Vehicular Technology 47(2): 617–630

    Article  Google Scholar 

  15. Tjhung T. T., Chai C. C. (1999) Fade statistics in Nakagami-lognormal channels. IEEE Transactions on Communications 47(12): 1769–1772

    Article  Google Scholar 

  16. Ramos, F., Kontorovitch, V. Y., & Lara, M. (2000). Generalization of Suzuki model for analog communication channels. In Proceedings IEEE antennas and propagation for wireless communication, IEEE APS 2000 (pp. 107–110).

  17. Nakagami M. (1960) The m-distribution: A general formula of intensity distribution of rapid fading. In: Hoffman W. G. (eds) Statistical methods in radio wave propagation. Pergamon Press, Oxford, UK

    Google Scholar 

  18. Yacoub M. D., Vargas J. E. B., de Guedes L. G. R. (1999) On higher order statistics of the Nakagami-m distribution. IEEE Transactions on Vehicular Technology 48(3): 790–794

    Article  Google Scholar 

  19. Shen Z., Heath R. W. Jr., Andrews J. G., Evans B. L. (2006) Space-time water-filling for composite MIMO fading channels. EURASIP Journal on Wireless Communications and Networking 2006(2): 48–48

    Google Scholar 

  20. Yang L. (2007) Outage performance of OSTBC in MIMO channels with shadowing. Wireless Personal Communications 43(4): 1751–1754

    Article  Google Scholar 

  21. Salzer H. E., Zucker R., Capuano R. (1952) Table of the zeros and weight factors of the first twenty hermite polynomials. Journal of Research of the National Bureau of Standards 48: 111–116

    MathSciNet  Google Scholar 

  22. Gradshteyn I. S., Ryzhik I. M. (2000) Table of integrals, series, and products. Academic Press, New York

    MATH  Google Scholar 

  23. Pätzold, M., & Yang, K. (2006). An exact solution for the level-crossing rate of shadow fading processes modelled by using the sum-of-sinusoids principle. In Proceedings 9th international symposium on wireless personal multimedia communications, WPMC 2006 (pp. 188–193). San Diego, USA.

  24. Paulraj A. J., Nabar R., Gore D. (2003) Introduction to space-time wireless communications. Cambridge University Press, Cambridge, UK

    Google Scholar 

  25. Alouini M.-S., Abdi A., Kaveh M. (2001) Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels. IEEE Transactions on Vehicular Technology 50(6): 1471–1480

    Article  Google Scholar 

  26. Papoulis A., Pillai S. U. (2002) Probability, random variables and stochastic processes. McGraw-Hill, New York

    Google Scholar 

  27. Yacoub M. D., da Silva C. R. C. M., Vargas Bautista J. E. (2001) Second-order statistics for diversity-combining techniques in Nakagami-fading channels. IEEE Transactions on Vehicular Technology 50(6): 1464–1470

    Article  Google Scholar 

  28. Krantzik A., Wolf D. (1990) Distribution of the fading-intervals of modified Suzuki processes. In: Torres L., Masgrau E., Lagunas M. A. (eds) Signal processing V: Theories and applications. Elsevier Science Publishers, B.V, Amsterdam, The Netherlands, pp 361–364

    Google Scholar 

  29. Hogstad, B. O., & Pätzold, M. (2007). Exact closed-form expressions for the distribution, level-crossing rate, and average duration of fades of the capacity of MIMO channels. In Proceedings 65th semiannual vehicular technology conference, IEEE VTC 2007-Spring (pp. 455–460). Dublin, Ireland.

  30. Pätzold M. (2002) Mobile fading channels. John Wiley & Sons, Chichester

    Book  Google Scholar 

  31. Giorgetti A., Smith P. J., Shafi M., Chiani M. (2003) MIMO capacity, level crossing rates and fades: The impact of spatial/temporal channel correlation. Journal of Communications and Networks 5(2): 104–115

    Google Scholar 

  32. Wang H. S., Moayeri N. (1995) Finite-state Markov channel—a useful model for radio communication channels. IEEE Transactions on Vehicular Technology 44(1): 163–171

    Article  Google Scholar 

  33. Vijayan, R., & Holtzman, J. M. (1993). Foundations for level crossing analysis of handoff algorithms. In Proceedings IEEE international conference on communications, ICC 1993 (pp. 935–939). Geneva, Switzerland.

  34. Lai, J., & Mandayam, N. B. (1998). Packet error rate for burst-error-correcting codes in Rayleigh fading channels. In Proceedings of the IEEE 48th vehicular technology conference, VTC’98. Ottawa, Ontario, Canada.

  35. Abramowitz M., Stegun I. A. (1984) Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards, Washington

    MATH  Google Scholar 

  36. Gudmundson M. (1991) Correlation model for shadow fading in mobile radio systems. Electronics letters 27(23): 2145–2146

    Article  Google Scholar 

  37. Pätzold M., Wang C. X., Hogstad B. O. (2009) Two new sum-of-sinusoids-based methods for the efficient generation of multiple uncorrelated Rayleigh fading waveforms. IEEE Transactions on Wireless Communications 8(6): 3122–3131

    Article  Google Scholar 

  38. Rice S. O. (1944) Mathematical analysis of random noise. Bell System Technical Journal 23: 282–332

    MathSciNet  MATH  Google Scholar 

  39. Rice S. O. (1945) Mathematical analysis of random noise. Bell System Technical Journal 24: 46–156

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulzaib Rafiq.

Additional information

The material in this paper is based on “On the Statistical Properties of the Capacity of OSTBC Nakagami-Lognormal MIMO Channels”, by Gulzaib Rafiq and Matthias Pätzold which appeared in the proceedings of 4th IEEE International Conference on Signal Processing and Communication Systems, ICSPCS 2010, Gold Coast, Australia, December 2010. © 2010 IEEE.

Throughout this paper, we will refer to the MIMO dimension as N R ×  N T , where N R is the number of receive antennas and N T denotes the number of transmit antennas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafiq, G., Pätzold, M. The Impact of Shadowing and the Severity of Fading on the First and Second Order Statistics of the Capacity of OSTBC MIMO Nakagami-Lognormal Channels. Wireless Pers Commun 65, 601–616 (2012). https://doi.org/10.1007/s11277-011-0275-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-011-0275-x

Keywords

Navigation