Skip to main content
Log in

Blind Joint Symbol Detection and DOA Estimation for OFDM System with Antenna Array

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

An analysis of the received signal of Orthogonal frequency division multiplexing (OFDM) system with array antennas shows that the received signal has trilinear model characteristics. Trilinear decomposition-based joint symbol detection and direction of arrival (DOA) estimation for OFDM system with antenna array is proposed in this paper. The simulation results reveal that the symbol detection performance of the proposed algorithm is very close to the post-FFT receiver with perfect channel state information; DOA estimation performance is very close to least squares method, and even this algorithm supports small sample sizes. Finally this algorithm does not require the channel fading information, DOA and training sequence or pilot information, so it has blind characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hara S., Mouri M., Okada M., et al. (1995/1996). Transmission performance analysis of multi-carrier modulation in frequency selective fast Rayleigh fading channel. Wireless Personal Communications 2(4):335–356

    Article  Google Scholar 

  2. Vann R., Morikura M., et al. (1999). New high rate wireless LAN standards. IEEE Communications Magazine 37(12):82–88

    Article  Google Scholar 

  3. Lehne P.H., Pettersen M. (1999). An overview of smart antenna technology for mobile communications systems. IEEE Communications Surveys 2(4):2–13

    Google Scholar 

  4. Kapoor S., Marchok D.J., Huang Y.-F. (1999). Adaptive interference suppression in multiuser wireless OFDM systems using antenna arrays. IEEE Transactions on Signal Processing 47(12):3381–3391

    Article  Google Scholar 

  5. Wang K.-K., Cheng R.S.-K., Letaief K.B. et al. (2001). Adaptive antennas at the mobile and base stations in an OFDM/TDMA system. IEEE Transactions on Communications 49(1):195–206

    Article  Google Scholar 

  6. Budsabathon M., Hara Y., Hara S. (2004). Optimum beamforming for pre-FFT OFDM adaptive antenna array. IEEE Transactions on Vehicular Technology 53(4):945–955

    Article  Google Scholar 

  7. Okada M., Komak S. (2001). Pre-DFT combining space diversity assisted COFDM. IEEE Transactions on Vehicular Technology 50:487–496

    Article  Google Scholar 

  8. Budsabathon M., Hara Y., Hara S., et al. (2003). On a novel pre-FFT OFDM adaptive antenna array for delayed signal suppression. IEICE Transactions on Communications, E86-B(6):1936–1945

    Google Scholar 

  9. Li, Y. (Geoffrey), & Sollenberger, N. R. (1999). Adaptive antenna arrays for OFDM systems with co-channel interference. IEEE Transactions on Communications, 47(2), 217–229.

    Google Scholar 

  10. Kruskal J.B. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and its Applications 18:95–138

    Article  MATH  MathSciNet  Google Scholar 

  11. Pham T.D., Mocks J. (1992). Beyond principal component analysis: A trilinear decomposition model and least squares estimation. Psychometrika 57(2):203–215

    Article  MATH  MathSciNet  Google Scholar 

  12. Wu H.-L., Yu R.-Q., Oguma K. (2001). Trilinear component analysis in modern analytical chemistry. Analytical Sciences 17(4):1483–1486

    Article  Google Scholar 

  13. Wise B.M., Gallagher N.B., Butler S.W., White D.D., Barna G.G. (1999). A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. Journal of Chemometrics 13:379–396

    Article  Google Scholar 

  14. Henrion R., Andersson C.A. (1999). A new criterion for simple-structure core transformations in N-way principal components analysis. Chemometrics and Intelligent Laboratory Systems 47:189–204

    Article  Google Scholar 

  15. De Lathauwer L., De Moor B., Vandewalle J. (2004). Computation of the canonical decomposition by means of a simultaneous generalized Schur decompositition. SIAM Journal of Matrix Analysis and Applications 26(2):295–327

    Article  MATH  Google Scholar 

  16. De Lathauwer L. (2006). A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM Journal of Matrix Analysis and Applications 28(3):642–666

    Article  MATH  Google Scholar 

  17. Sidiropoulos N.D., Giannakis G.B., Bro R. (2000). Blind PARAFAC receivers for DS-CDMA systems. IEEE Transactions on Signal Processing 48:810–823

    Article  Google Scholar 

  18. Sidiropoulos N.D., Bro R., Giannakis G.B. (2000). Parallel factor analysis in sensor array processing. IEEE Transactions on Signal Processing 48(8):2377–2388

    Article  Google Scholar 

  19. Rong Y., Vorobyov S.A., Gershman A.B., Sidiropoulos N.D. (2005). Blind spatial signature estimation via time-varying user power loading and parallel factor analysis. IEEE Transactions on Signal Processing 53(5):1697–1710

    Article  MathSciNet  Google Scholar 

  20. Sidiropoulos N.D., Liu X. (2001). Identifiability results for blind beamforming in incoherent multipath with small delay spread. IEEE Transactions on Signal Processing 49(1):228–236

    Article  Google Scholar 

  21. Yu Y., Petropulu A.P. (2006). Parafac based blind estimation of mimo systems with possibly more inputs than outputs. IEEE International Conference on Acoustics, Speech and Signal Processing 3:133–136

    Google Scholar 

  22. Mokios, K. N., Sidiropoulos, N. D., & Potamianos, A. (2006). Blind speech separation using Parafac analysis and integer least squares. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 73–76, May 2006.

  23. Zhang, X., & Xu, D. (2006). Blind PARAFAC receiver for space-time block-coded CDMA system. International Conference on Communications, Circuits and Systems Proceedings, pp. 675–678.

  24. Zhang, X., & Xu, D. (2006). PARAFAC multiuser detection for SIMO-CDMA system. International Conference on Communications, Circuits and Systems Proceedings, pp. 744–747.

  25. Zhang X., Xu D. (2006). Blind PARAFAC signal detection for uniform circular array with polarization sensitive antennas. Transactions of Nanjing University of Aeronautics and Astronautics 23(4):291–296

    MATH  Google Scholar 

  26. Vorobyov S.A., Rong Y., Sidiropoulos N.D., Gershman A.B. (2005). Robust iterative. Fitting of multilinear models. IEEE Transactions on Signal Processing 53(8):2678–2689

    Article  MathSciNet  Google Scholar 

  27. Tomasi G., Bro R. (2006). A comparison of algorithms for fitting the PARAFAC model. Computational Statistics & Data Analysis 50:1700–1734

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Feng, B. & Xu, D. Blind Joint Symbol Detection and DOA Estimation for OFDM System with Antenna Array. Wireless Pers Commun 46, 371–383 (2008). https://doi.org/10.1007/s11277-007-9440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-007-9440-7

Keywords

Navigation