A new family of optimized orthogonal Space-Times codes for PPM-based MIMO systems with imperfect channel estimates


In this contribution, we develop a single Multiple-Input Multiple Output (MIMO) transceiver for Orthogonal PPM (OPPM) data transmitted over (baseband) faded MIMO channels with a priori unknown path-gains. The signaling-scheme we adopt allows to equip the Maximum-Likelihood receiver with reliable estimates of the (possibly time-varying) MIMO channel, without reducing the conveyed information throughput. Hence, after evaluating the performance of the proposed transceiver via a suitable version of the Union-Chernoff Bound, we introduce a novel family of unitary orthogonal Space-Times Block Codes (e.g., the Space-Time OPPM codes), that are able to attain both maximum diversity and coding gains. Afterwards, we present closed-form formulas for evaluating the SNR loss induced by mistiming effects possibly impairing the received signals. Lastly, we report several numerical results supporting both the medium/long coverage ranges attained by the proposed transceiver in outdoor applications and its performance robustness against correlated channel fading, mistiming effects and degradation induced by dense-multipath fading.

This is a preview of subscription content, access via your institution.


  1. 1.

    Alamouti S.M. (2000). A simple transmitter diversity scheme for wireless communications. IEEE JSAC 18(7): 1169–1174

    Google Scholar 

  2. 2.

    Baccarelli E., Biagi M. (2004). Performance and optimized design of space-time codes for mimo wireless systems with imperfect channel-estimates. IEEE Transactions on Signal Processings 52(10): 2911–2923

    Article  Google Scholar 

  3. 3.

    Baccarelli E., Biagi M. (2004). A novel self-pilot based transmit-receiving architecture for multipath-impaired UWB systems. IEEE Transactions on Communication 53(6): 891–895

    Article  Google Scholar 

  4. 4.

    Baccarelli E., Biagi M., Pelizzoni C., Bellotti P. (2004). A novel multi-antenna impulse radio UWB transceiver for broadband high-throughput 4G WLANs. IEEE Communications Letters 8(7): 419–421

    Article  Google Scholar 

  5. 5.

    Baccarelli, E., Biagi, M., Pelizzoni, C., & Cordeschi, N. (2005). Asynchronims loss for MIMO UWB-Systems. Infocom Tech. Internal Report, available at http://infocom.uniroma1.it/~pelcris/asynchronism.pdf.

  6. 6.

    Baccarelli, E., Biagi, M., Bruno, R., Conti, M., & Gregori, E. (2005). Broadband wireless access networks: a roadmap on emerging trends and standards, in broadband services: Business model and technologies for community networks. (pp. 215–240). New york: Wiley.

  7. 7.

    Buchrer, R. M., Davis, W. A., Safai-Jazi, A., & Sweeney, D. (2004). Ultra-wideband propagation. Measurements and modeling. DARPA NETEX Program Final report, available at: http://www.mprg.org/people/buchrer/ultra/darpa_netex.shtml.

  8. 8.

    Cramer, R. J. M., Scholtz, R. A., & Win, M. Z. (1999). Spatio-temporal diversity in ultra-wideband radio. In Proceedings of the IEEE wireless communication and networking conference, New Orleans, vol. 2, pp. 888–892.

  9. 9.

    Fleming, R., Kushner, C., Roberts, G., & Nandiwiada, U. (2002). Rapid acquisition for ultra-wideband localizers. IEEE Proc. Conf. UWB Syst. Techn., Baltimore, ML, USA, pp. 245–250.

  10. 10.

    Foerster, J. (2001). The effects of multipath interference on the performance of UWB systems in an indoor wireless channel. Proceedings of the Vehicular Technology Conference, Rhodes, Greek, pp. 1176–1180.

  11. 11.

    Foschini G.J. (1996). Layered space-time architecture for wireless communications in a fading environment using multi-element arrays. Bell Labs Technical Journal 1: 41–59

    Article  Google Scholar 

  12. 12.

    Foschini G.J. (1996). Layered space-time architecture for wireless communications in a fading environment using multi-element arrays. Bell Labs Technical Journal 2: 41–59

    Article  Google Scholar 

  13. 13.

    Guey J.C., Fitz M.P., Bell M.R., Kuo W.Y. (1999). Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels. IEEE Trasactions on Communications 47: 527–537

    Article  Google Scholar 

  14. 14.

    Hassibi B., Hockwald B.M. (2003). How much training is needed in multiple-antenna wireless links?. IEEE Transactions on Informations Theory 49: 951–963

    MATH  Article  Google Scholar 

  15. 15.

    Hochwald B.M., Marzetta T.L. (2000). Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Transactions on Informations Theory 46(2): 543–564

    MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    Hochwald B.M., Sweldens W. (2000). Differential unitary space-time modulation. IEEE Transactions on Communication 48(12): 2041–2052

    Article  Google Scholar 

  17. 17.

    Hughes B.L. (2000). Differential space-time modulation. IEEE Transactions on Information Theory 46(7): 2567–2578

    MATH  Article  Google Scholar 

  18. 18.

    Jongren G., Skoglund M., Ottersen B. (2002). Combining beamforming and orthogonal space-time block coding. IEEE Transactions on Informations Theory 48(3): 611–627

    Article  Google Scholar 

  19. 19.

    Lancaster P., Tismenetsky M. (1985). The theory of matrices (2nd ed.). New York, Academic

    MATH  Google Scholar 

  20. 20.

    Marzetta, T. L. (1999). BLAST training: Estimating channel characteristic for high-capacity space-time wireless. In Proceedings of the 37th annual allerton conference on comm., contr. and comp, Monticello, IL, USA.

  21. 21.

    Mattera D., Paura L., Sterle F. (2005). Widely linear decision-feedback equalizer for time-dispersive linear MIMO channels. IEEE Transactions on Signal Processings 53(7): 2525–2536

    Article  MathSciNet  Google Scholar 

  22. 22.

    Paulray A. (2003). Introduction of space-time wireless commmunications. Cambridge, Cambridge University Press

    Google Scholar 

  23. 23.

    Pohl V., Jungnickel V., von Helmot C. (2005). The algebraic structure of frequency-selective mimo channels. IEEE Transactions on Signal Processing 53(7): 2498–2592

    Article  MathSciNet  Google Scholar 

  24. 24.

    Proakis J.G. Digital communication, (4th ed.). New york, McGraw Hill.

  25. 25.

    Rappaport T.S., Annamalai A., Buherer R.M., Tranter W.H. (2002). Wireless communications: past events and future perspective. IEEE Communications Maganize 40(5): 148–161

    Article  Google Scholar 

  26. 26.

    Reed J.H., et alii (2005). An introduction to ultra wide band communication systems, ed. Englewood Cliffs, NJ, Prentice Hall

    Google Scholar 

  27. 27.

    Saleh A.A.M., Valezuela R.A. (1987). A statistical model for indoor multipath propagation. IEEE JSAC 5(2): 128–137

    Google Scholar 

  28. 28.

    Saltz J., Winters J.M. (1994). Effects of fading correlation on adaptive arrays in digital mobile radio. IEEE Transactions on Vechicutar Technology 43(3): 1049–1056

    Article  Google Scholar 

  29. 29.

    Siwiak, K., & Petroff, A. (2001). A path link model for ultra wide band transmission. In Proceedings of the IEEE VTC2001, Rhodes, Greek.

  30. 30.

    Tarokh V., Jafarkani H. (2000). A differential detection scheme for transmit diversity. IEEE JSAC 18(7): 1169–1174

    Google Scholar 

  31. 31.

    Tarokh V., Jafarkani H., Calderbank A.R. (1999). Space-time block coding for wireless communications: Performance results. IEEE JSAC 17(3): 451–460

    Google Scholar 

  32. 32.

    Wilson S.G. (1995). Digital modulation and coding. Englewood diffs, NJ, Prentice-Hall

    Google Scholar 

  33. 33.

    Win M.Z., Ramirez F., Scholtz R.A., Barnes M.A. (1997). Ultra-wide-bandwidth (UWB) signal propagation for outdoor wireless communications. IEEE Vehicular Technology Conference 1: 251–255

    Google Scholar 

  34. 34.

    Zheng L., Tse D.N.C. (2002). Communication on Grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel. IEEE Transactions on Informations Theory 48(2): 359–383

    MATH  Article  MathSciNet  Google Scholar 

  35. 35.

    Zhiwei L., Prekumar B., Madhukumar A.S. (2004). MMSE detection for high data rate UWB MIMO systems. Vehicular Technology Conference 2: 1463–1467

    Google Scholar 

  36. 36.

    Zhou S., Giannakis G. (2002). Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback. IEEE Transactions on Signal Processing 50(10): 2599–2613

    Article  Google Scholar 

  37. 37.

    Zhu X., Murch R.D. (2002). Performance analysis of maximum likelihood detection in a mimo antenna system. IEEE Transactions on Communication 50: 187–171

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mauro Biagi.

Additional information

This work is partially supported by Italian National Project Women 2005093248

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baccarelli, E., Biagi, M., Pelizzoni, C. et al. A new family of optimized orthogonal Space-Times codes for PPM-based MIMO systems with imperfect channel estimates. Wireless Pers Commun 43, 1071–1091 (2007). https://doi.org/10.1007/s11277-007-9284-1

Download citation


  • Faded MIMO channels
  • Space-Time Block Codes (STBCs)
  • STOPPM codes
  • Coverage range
  • Mistiming effects
  • Dense-multipath fading