Advertisement

Wireless Personal Communications

, Volume 42, Issue 3, pp 405–430 | Cite as

Reconfigurable Antenna for Future Wireless Communication Systems

  • E. Del Re
  • S. MorosiEmail author
  • D. Marabissi
  • L. Mucchi
  • L. Pierucci
  • L. S. Ronga
Article

Abstract

This paper deals with the processing techniques which are known as reconfigurable antennas: these methods are foreseen to be a booster for the future high rate wireless communications, both for the benefits in terms of performance and for the capacity gains. In particular, adaptive digital signal processing can provide improved performance for the desired signal in terms of error probability or signal-to-noise ratio while the bandwidth efficiency can be increased linearly with the number of transmitting and receiving antennas. In this article, the main antenna processing techniques are reviewed and described, aiming at highlighting performance/complexity trade-offs and how they could be implemented in the future systems. The coexistence of all these different technologies in a wireless environment requires high efficiency and flexibility of the transceiver. Future transceiver implementations which are based on the Software Defined Radio technology are also reviewed and described.

Keywords

radio channel smart antennas adaptive beamforming estimation of the direction of arrival antenna diversity spatial filtering MIMO techniques space-time coding space time coded modulation space time block codes BLAST iterative MUD software radio terminal hardware architecture remote terminal configuration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.C. Jakes, Microwave Mobile Communications. John Wiley and Sons, New York, 1974.Google Scholar
  2. 2.
    J.G. Proakis, Digital Communications. McGraw-Hill, New York, USA, 2nd edn., 1989.Google Scholar
  3. 3.
    Parsons J.D. (1992) The Mobile Radio Propagation Channel. Pentech Press, LondonGoogle Scholar
  4. 4.
    A. Naguib, Adaptive Antennas for CDMA Wireless Networks. Ph.D. Thesis, Stanford University, Stanford, USA, 1996.Google Scholar
  5. 5.
    Sklar B. (1997) “Rayleigh Fading Channels in Mobile Digital Communication Systems Part I: Characterization”. IEEE Commun. pag. 35(7): 90–100CrossRefGoogle Scholar
  6. 6.
    Sklar B. (1997) “Rayleigh Fading Channels in Mobile Digital Communication Systems Part II: Mitigation”. IEEE Commun. Mag. 35(7): 102–109CrossRefGoogle Scholar
  7. 7.
    Ertel R.B., Cardieri P., Sowerby K.W., Rappaport T.S., Reed J.H. (1998) “Overview of Spatial Channel Models for Antenna Array Communication Systems”. IEEE Pers. Commun. 5(1): 10–22CrossRefGoogle Scholar
  8. 8.
    G. Wetzker, U. Kaage, and F. Jondral, “A Simulation Method for Doppler Spectra”, in Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications, Vol. 2, pp. 517–521, 1998.Google Scholar
  9. 9.
    T. Fulghum and K. Molnar, “The Jakes Fading Model Incorporating Angular Spread for a Disk of Scatters”, in Proc. IEEE Veh. Technol. Conf., Ottawa, Canada, pp. 489–493, 1998.Google Scholar
  10. 10.
    P.V. Rooyen, M.P. Lotter, and D.V. Wyk, Space-Time Processing for CDMA Communications. Kluwer Academic Publishers, Boston, Dordrecht, London, 1st edn., 1999.Google Scholar
  11. 11.
    X. Wang and H. Poor, “Space-Time Processing in Multiple-Access Systems”, in Proc. IEEE Wireless Commun. Networking Conf., Vol. 1, pp. 129–133, 1999.Google Scholar
  12. 12.
    Fleury B.H. (2000) “First- and Second-Order Characterization of Direction Dispersion and Space Selectivity in the Radio Channel”. IEEE Trans. Inform. Theory. 46(6):2027–2044zbMATHCrossRefGoogle Scholar
  13. 13.
    M. Stege, J. Jelitto, M. Bronzel, and G. Fettweis, “A Multiple Input-Multiple Output Channel Model for Simulation of Tx- and Rx- Diversity Wireless Systems”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, pp. 833–839, 2000.Google Scholar
  14. 14.
    K.I. Pedersen, J.B. Andersen, J.P. Kermoal, and P. Mogensen, “A Stohastic Multipleinput Moultiple-Output Radio Channel Model for Evaluation of Space-time Coding Algorithms”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, pp. 893-897, 2000.Google Scholar
  15. 15.
    J.S. Hammerschmidt and A.A. Hutter, “Spatio-Temporal Channel Models for the Mobile Station: Concept, Parameters, and Canonical Implementation”, in Proc. IEEE Veh. Technol. Conf., Vol. 3, pp. 1641–1645, 2000.Google Scholar
  16. 16.
    T. Klingenbrunn, and P. Mogensen, “Modelling Radio Link Performance in UMTS W-CDMA Network Simulations”, in Proc. IEEE Veh. Technol. Conf., Vol. 2, pp. 1011–1015, 2000.Google Scholar
  17. 17.
    Chen T.A., Fitz M.P., Kuo W.Y., Zoltowski M.D., Grim J.H. (2000) “A Space-Time Model for Frequency Non-Selective Rayleigh Fading Channels with Applications to Space-Time Modems”. IEEE J. Select Areas Commun. 18(7): 1175–1190CrossRefGoogle Scholar
  18. 18.
    T. Ottersten, “Array Processing for Wireless Communications”, in Proc. Workshop Sign. Process. Statist. Array Process., pp. 466–473, 1996.Google Scholar
  19. 19.
    Paulraj A.J., Papadias C.B. (1997) “Space-time Processing for Wireless Communications”. IEEE Signal Processing Mag. 14(6): 49–83CrossRefGoogle Scholar
  20. 20.
    Godara L.C. (1997) “Applications of Antenna Arrays to Mobile Communications, Part I: Performance Improvement, Feasibility and System Considerations”. Proc. IEEE. 85(7): 1031–1060CrossRefGoogle Scholar
  21. 21.
    Godara L.C. (1997) “Applications of Antenna Arrays to Mobile Communications, Part II: Beam-Forming and Direction-of-Arrival Considerations”. Proc IEEE 85(8): 1195–1245CrossRefGoogle Scholar
  22. 22.
    Paulraj A.J., Ng B.N. (1998) “Space-Time Modems for Wireless Personal Communications”. IEEE Pers. Commun. 5(1): 36–48CrossRefGoogle Scholar
  23. 23.
    J.H. Winters, “Smart Antennas for Wireless Systems”, IEEE Commun. Mag., pp. 23–27, 1998.Google Scholar
  24. 24.
    Kohno R. (1998) “Spatial and Temporal Communication Theory using Adaptive Antenna Array”. IEEE Pers. Commun. 5(1): 28–35CrossRefMathSciNetGoogle Scholar
  25. 25.
    A.J. Paulraj and E. Lindskog, “Taxonomy of Space-Time Processing for Wireless Networks”, IEE J. Radar Sonar and Navig. Vol. 145, No. 1, 1998.Google Scholar
  26. 26.
    G.V. Tsoulos, “Smart Antennas for Mobile Communication Systems: Benefits and Challenges”, Electronics Commun. Engineering J., pp. 84–94, 1999.Google Scholar
  27. 27.
    Sheikh K., Gesbert D., Gore D., Paulraj A. (1999) “Smart Antennas for Broadband Wireless Access Networks”. IEEE Commun. Mag. 37(11): 100–105CrossRefGoogle Scholar
  28. 28.
    D. Falconer, A. Leganin, and S. Roy, “Receiver Spatial-Temporal Signal Processing for Broadband Wireless Systems”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., London, UK, 2000.Google Scholar
  29. 29.
    J. Choi and S. Choi, “Diversity Gain for CDMA Systems Equipped with Antenna Arrays”, IEEE Trans. Veh. Technol. submitted 2002.Google Scholar
  30. 30.
    S.S. Jeng, G. Xu, H.P. Lin, and W.J. Vogel, “Experimental Study of Antenna Arrays in Indoor Wireless Applications”, in Proc. Conf. Asilomar Sign., Syst., Comp., Vol. 2, pp. 766–770, 1995.Google Scholar
  31. 31.
    P.B. Rapajic, “Information Capacity of the Space Division Multiple Access Mobile Communication System”, in Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications, Vol. 3, pp. 946–950, 1998.Google Scholar
  32. 32.
    M.P. Lotter, and P.V. Rooyen, “An Overview of Space Division Multiple Access Techniques in Cellular Systems”, in Proc. Symp. South Afric. Commun. Sign. Process., pp. 161–164, 1998.Google Scholar
  33. 33.
    U. Vornefeld, C. Walke, and B. Walke, “SDMA Techniques for Wireless ATM”, IEEE Commun. Mag. pp. 52–57, 1999.Google Scholar
  34. 34.
    E. Del Re, L. Pierucci, and S. Marapodi, “On the Application of DOA Estimation Techniques to UMTS System”, in Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications, Praha, CK, 2002.Google Scholar
  35. 35.
    T. Svantesson, “A Study of Polarization Diversity using an Electromagnetic Spatio-Temporal Channel Model”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, 2000.Google Scholar
  36. 36.
    F. Argenti, T. Bianchi, L. Mucchi, and L.S. Ronga, Ultra-Wideband Transmission with Polarization Diversity. UWB Communication Systems - A Comprehensive Overview. EURASIP Book. To be published, 2004.Google Scholar
  37. 37.
    V. Tarokh, S.M. Alamouti, and P. Poon, “New Detection Schemes for Transmit Diversity with no Channel Estimation”, in Proc. IEEE Int. Conf. Universal Pers. Commun., Florence, Italy, Vol. 2, pp. 917–920, 1998.Google Scholar
  38. 38.
    Tarokh V., Jafarkhani H. (2000) “A Differential Detection Scheme for Transit Diversity”. IEEE J. Select Areas Commun. 18(7): 1043–1047CrossRefGoogle Scholar
  39. 39.
    Hochwald B.M., Marzetta T.L. (2000) “Unitary Space-Time Modulation for Multipleantenna Communications in Rayleigh Flat Fading”. IEEE Trans. Inform Theory 46(2): 543–563zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    A. Grant and C. Schlegel, “Differential Turbo Space-Time Coding”, in Proc. IEEE Inf. Th. Workshop, Cairns, Australia, pp. 467–471, 2001.Google Scholar
  41. 41.
    A. Steiner, M. Peleg, and S. Shamai, “Turbo Coded Space-Time Unitary Matrix Differential Modulation”, in Proc. IEEE Veh. Technol. Conf., Rhodes, Greece, Vol. 2, pp. 1352–1356, 2001.Google Scholar
  42. 42.
    I. Bahceci and T.M. Duman, “Combined Turbo Coding and Unitary Space-time Modulation”, in Proc. IEEE Int. Symp. Inform. Theory, Washington DC, USA, p. 106, 2001.Google Scholar
  43. 43.
    B. Gozali, et al., “Virginia Tech Space-Time Advanced Radio (VT-STAR)”, in Proc. Conf. Radio and Wireless Commun., pp. 227–231, 2001.Google Scholar
  44. 44.
    J. Borran, A. Sabharwal, B. Aazhang, and D. Johnson, “On Design Criteria and Construction of Non-Coherent Space-Time Constellations”, in Proc. IEEE Int. Symp. Inform. Theory, Lausanne, Switzerland, p. 74, 2002.Google Scholar
  45. 45.
    S. Barbarossa, and A. Scaglione, “Optimal Precoding for Transmissions over Linear Time-Varying Channels”, in Proc. IEEE Global Telecommun. Conf., Rio de Janeiro, Brasil, pp. 2545–2549, 1999.Google Scholar
  46. 46.
    J. Kim and J.M. Cioffi, “Spatial Multiuser Access with Antenna Diversity using Singular Value Decomposition”, in Proc. IEEE Int. Conf. Commun., New Orleans, USA, Vol. 2, pp. 1253–1257, 2000.Google Scholar
  47. 47.
    S.K. Lai, R.S.K. Cheng, K.B. Letaief, and R.D. Murch, “Adaptive Trellis Coded MQAM and Power Optimization for OFDM Transmission”, in Proc. IEEE Veh. Technol. Conf., Houston, USA, pp. 290–294, 1999.Google Scholar
  48. 48.
    G.K. Myers, and S.G. Wilson, “Concatenated Space-Time Coding with Transmitter Precoloring”, in Proc. Conf. Inform. Sciences Syst. (CISS), Princeton, USA, 2002.Google Scholar
  49. 49.
    Tarokh V., Seshadri N., Calderbank A.R. (1998) “Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction”. IEEE Trans. Inform Theory 44(2): 744–765zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    A. Wittneben, “A New Bandwidth Efficient Transmit Antenna Modulation Diversity Scheme for Linear Digital Modulation”, in Proc. IEEE Int. Conf. Commun., Vol. 3, pp. 1630–1634, 1993.Google Scholar
  51. 51.
    N. Seshadri, and J.H. Winters, “Two Signaling Schemes for Improving the Error Performance of Frequency-Division-Duplex (FDD) Transmission Systems using Transmitter Antenna Diversity”, in Proc. IEEE Veh. Technol. Conf., Secaucus, USA, pp. 508–511, 1993.Google Scholar
  52. 52.
    Winters J.H. (1998) “The Diversity Gain of Transmit Diversity in Wireless Systems with Rayleigh Fading”. IEEE Trans. Veh. Technol. 47(1): 119–123CrossRefMathSciNetGoogle Scholar
  53. 53.
    S. Li, X. Tao, W. Wang, P. Zhang, and C. Han, “Generalized Delay Diversity Code: A Simple and Powerful Space-Time Coding Scheme”, in Proc. Conf. ICCT, pp. 1697–1703, 2000.Google Scholar
  54. 54.
    Tao M., Cheng R.S. (2001) “Improved Design Criteria and New Trellis Codes for Spacetime Coded Modulation in Slow Flat Fading Channels”. IEEE Commun. Lett. 5(7): 313–315CrossRefGoogle Scholar
  55. 55.
    Z. Safar and K.J.R. Liu, “Systematic Space-Time Trellis Code Design for an Arbitary Number of Transmit Antennas”, in Proc. IEEE Veh. Technol. Conf., Rhodes, Greece, pp. 8–12, 2001.Google Scholar
  56. 56.
    W. Firmanto, J. Yuan, and B. Vucetic, “Space-Time Trellis Coded Modulation for Fast Fading Channels”, in Proc. IEEE Int. Symp. Inform. Theory and its Applications, Honolulu, USA, 2000.Google Scholar
  57. 57.
    S.A. Zummo and S.A. Al-Semari, “Space-Time Coded QPSK for Rapid Fading Channels”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., London, UK, 2000.Google Scholar
  58. 58.
    Firmanto W., Yuan B.V.J. (2001) “Space-Time TCM with Improved Performance on Fast Fading Channels”. IEEE Commun. Lett. 5(4): 154–156CrossRefGoogle Scholar
  59. 59.
    Pereira A., Carrasco R.A. (2001) “Space-Time Ring TCM Codes for QPSK on Time varying Fast Fading Channels”. Electron Lett. 37(15): 961–962CrossRefGoogle Scholar
  60. 60.
    Z. Safar and K.J.R. Liu, “Space-Time Trellis Code Construction for Fast Fading Channels”, in Proc. IEEE Int. Conf. Commun., New York, USA, 2002.Google Scholar
  61. 61.
    Lin X., Blum R.S. (2002) “Systematic Design of Space-Time Codes Employing Multiple Trellis Coded Modulation”. IEEE Trans. Commun. 50(4): 608–615CrossRefGoogle Scholar
  62. 62.
    S.A. Zummo and S.A. Al-Semari, “A Decoding Algorithm for I-Q Space-Time Coded Systems in Fading Environments”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, pp. 331–335, 2000.Google Scholar
  63. 63.
    J. Boutros, F. Boixadera, and C. Lamy, “Bit-Interleaved Coded Modulations for Multiple-Input Multiple-Output Channels”, in Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications, New Jersey, USA, pp. 123–126, 2000.Google Scholar
  64. 64.
    A.M. Tonello, “Space-Time Bit-Interval Coded Modulation with an Iterative Decoding Strategy”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, 2000.Google Scholar
  65. 65.
    A.M. Tonello, “Space-Time Bit-Interval Coded Modulation over Frequency Selective Fading Channels with Iterative Decoding”, in Proc. IEEE Global Telecommun. Conf., San Francisco, 2000.Google Scholar
  66. 66.
    A.M. Tonello, “On Turbo Equalization of Interleaved Space-Time Codes”, in Proc. IEEE Veh. Technol. Conf., pp. 887–891, 2001.Google Scholar
  67. 67.
    T. Muharemovic, A. Gatherer, W. Ebel, S. Hosur, and D.H.E. Huang, “Spacetime Codes with Bit Interleaving”, in Proc. IEEE Global Telecommun. Conf., Texas, USA, 2001.Google Scholar
  68. 68.
    Q. Yan and R.S. Blum, “Robust Space-Time Block Coding for Rapid Fading Channels”, in Proc. IEEE Global Telecommun. Conf., pp. 460–464, 2001.Google Scholar
  69. 69.
    A.F. Naguib and N. Seshadri, “MLSE and Equalization of Space-Time Coded Signals”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, 2000.Google Scholar
  70. 70.
    A.F. Naguib, “On the Matched Filter Bound of Transmit Diversity Techniques”, in Proc. IEEE Global Telecommun. Conf., San Francisco, USA, 2000.Google Scholar
  71. 71.
    N. Al-Dhahir, “Overview of Equalization Schemes for Space-Time-Coded Transmission with Application to EDGE”, in Proc. IEEE Veh. Technol. Conf., Vol. 2, pp. 1053–1057, 2001.Google Scholar
  72. 72.
    N. Al-Dhahir, “Single-Carrier Frequency-Domain Equalization for Spacetimecoded Transmissions over Broadband Wireless Channels”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., pp. 143–146, 2001.Google Scholar
  73. 73.
    N. Al-Dhahir, “Overview and Comparison of Different Equalization Schemes for Space-Time Coded Signals with Application to EDGE”, IEEE Trans. Signal Process., Vol. 50, No. 10, 2002.Google Scholar
  74. 74.
    G. Bauch, A.F. Naguib, and N. Seshadri, “MAP Equalization of Space-time Coded Signals over Frequency Selective Channels”, in Proc. IEEE Wireless Commun. And Networking Conf., New Orleans, USA, pp. 261–265, 1999.Google Scholar
  75. 75.
    B.L. Yeap, T.H. Liew, and L. Hanzo, “Iterative Tree Search Detection for MIMO Wireless Systems”, in Proc. IEEE Veh. Technol. Conf., pp. 1689–1693, 2002.Google Scholar
  76. 76.
    J.H. Manton and Y. Hua, “Frequency Domain Space Time Coding for MIMO FIR Channels”, in Proc. Conf. Asilomar Sign., Syst., Comp., Pacific Grove, USA, pp. 721–724, 2000.Google Scholar
  77. 77.
    Y. Liu, P. Fitz, and O.Y. Takeshita, “Space-Time Codes Performance Criteria and Design for Frequency Selective Fading Channels”, in Proc. IEEE Int. Conf. Commun., Helsinki, Finland, 2001.Google Scholar
  78. 78.
    Gore, S. Sandhu, and A. Paulraj, “Delay Diversity Codes for Frequency Selective Channels”, in Proc. IEEE Int. Conf. Commun., New York, USA, pp. 1949–1953, 2002.Google Scholar
  79. 79.
    Tarokh V., Naguib A., Seshadri N., Calderbank A.R. (1999) “Space-Time Codes for High Data Rate Wireless Communication: Performance Criteria in the Presence of Channel Estimation Errors, Mobility, and Multiple Paths”. IEEE Trans. Commun. 47(2): 199–207zbMATHCrossRefGoogle Scholar
  80. 80.
    Cozzo and B.L. Hughes, “Joint Detection and Estimation in Space-Time Coding and Modulation”, in Proc. Conf. Asilomar Sign., Syst., Comp., Pacific Grove, USA, Vol. 1, pp. 613–617, 1999.Google Scholar
  81. 81.
    A. Grant, “Joint Decoding and Channel Estimation for Space-Time Codes”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, pp. 416–420, 2000.Google Scholar
  82. 82.
    C. Cozzo and B.L. Hughes, “Joint Channel Estimation and Data Symbol Detection in Space-Time Communications”, in Proc. IEEE Int. Conf. Commun., New Orleans, USA, 2000.Google Scholar
  83. 83.
    Z. Baranski and A.M. Haimovich, “Iterative Channel Estimation and Sequence Detection for Space-Time Coded Modulation”, in Proc. Conf. Inform. Sciences Syst. (CISS), Princeton, USA, 2002.Google Scholar
  84. 84.
    Zhu X., Murch R.D. (2002) “Performance Analysis of Maximum Likelihood Detection in a MIMO Antenna System”. IEEE Trans. Commun. 50(2): 187–191CrossRefGoogle Scholar
  85. 85.
    Tarokh V., Jafarkhani H., Calderbank A.R. (1999) “Space-Time Block Coding for Wireless Communications: Performance Results”. IEEE J Select Areas Commun. 17(3): 451–460CrossRefGoogle Scholar
  86. 86.
    Tarokh V., Jafarkhani H., Calderbank A.R. (1999) “Space-Time Block Codes from Orthogonal Designs”. IEEE Trans. Inform Theory 45(5): 1456–1467zbMATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    A. Agrawal, G. Ginis, and J.M. Cioffi, “Channel Diagonalization through Orthogonal Space-Time Coding”, in Proc. IEEE Int. Conf. Commun., pp. 1621–1624, 2002.Google Scholar
  88. 88.
    Tirkkonen O., Hottinen A. (2002) “Square-Matrix Embeddable Space-Time Block Codes for Complex Signal Constellations”. IEEE Trans. Inform Theory 48: 384–395zbMATHCrossRefMathSciNetGoogle Scholar
  89. 89.
    Alamouti S. (1998) “A Simple Transmit Diversity Technique for Wireless Communications”. IEEE J. Select Areas Commun. 16(8): 1451–1458CrossRefGoogle Scholar
  90. 90.
    Holma H., Toskal A. (2000) WCDMA for UMTS. John Wiley and Sons, New YorkGoogle Scholar
  91. 91.
    S.M. Alamouti, V. Tarokh, and P. Poon, “Trellis-Coded Modulation and Transmit Diversity: Design Criteria and Performance Evaluation”, in Proc. IEEE Int. Conf. Universal Pers. Commun., Florence, Italy, Vol. 1, pp. 703–707, 1998.Google Scholar
  92. 92.
    G. Bauch, “Concatenation of Space-Time Block Codes and Turbo TCM”, in Proc. IEEE Int. Conf. Commun., pp. 1202–1206, 1999.Google Scholar
  93. 93.
    J.C. Guey, “Concatenated Coding for Transmit Diversity Systems”, in Proc. IEEE Veh. Technol. Conf., Houston, USA, pp. 2500–2504, 1999.Google Scholar
  94. 94.
    A. Yongacoglu and M. Siala, “Space-Time Codes for Fading Channels”, in Proc. IEEE Veh. Technol. Conf., Houston, USA, pp. 2495–2499, 1999.Google Scholar
  95. 95.
    D.J.V. Wyk, I.J. Oppermann, E. Pretorius, and P.G.W.V. Rooyen, “On the Construction of Layered Space-Time Coded Modulation STCM Codes Employing MTCM Code Design Techniques”, in Proc. IEEE Veh. Technol. Conf., Houston, USA, 1999.Google Scholar
  96. 96.
    T.H. Liew, J. Pliquett, B.L. Yeap, L.L. Yang, and L. Hanzo, “Comparative Study of Space-Time Block Codes and Various Concatenated Turbo Coding Schemes”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., 2000.Google Scholar
  97. 97.
    Kunnari and D. Tujkovic, “Performance Evaluation of Space-Time Codes in Wideband CDMA Over Frequency-Selective Rayleigh Fading Downlink Channel”, in Proc. IEEE Int. Conf. Commun., Helsinki, Finland, 2001.Google Scholar
  98. 98.
    Bauch and J. Hagenauer, “Analytical Evaluation of Space-Time Transmit Diversity with FEC-Coding”, in Proc. IEEE Global Telecommun. Conf., Texas, USA, 2001.Google Scholar
  99. 99.
    M.J. Borran, M. Memarzadeh, and B. Aazhang, “Design of Coded Modulation Schemes for Orthogonal Transmit Diversity”, in Proc. IEEE Int. Symp. Inform. Theory, Washington DC, USA, p. 339, 2001.Google Scholar
  100. 100.
    Firmanto W., Yuan J., Vucetic B. (1999) “Turbo Codes with Transmit Diversity: Performance Analysis and Evaluation”. IEICE Trans. Commun. E 1: 82–87Google Scholar
  101. 101.
    Yuan J., Firmanto W., Vucetic B. (2001) “Trellis Coded 2xMPSK Modulation with Transmit Diversity”. KICS J. Commun. Netw. 45(1): 273–279Google Scholar
  102. 102.
    Bouzerki and S.L. Miller, “Analytical Tools for Space-Time Codes Over Quasi-Static Fading Channels”, in Proc. IEEE Global Telecommun. Conf., Texas, USA, 2001.Google Scholar
  103. 103.
    Bouzerki and S.L. Miller, “Upper Bounds on Turbo Codes Performance Over Quasistatic Fading Channels”, in Proc. Conf. Inform. Sciences Syst. (CISS), Princeton, USA, 2002.Google Scholar
  104. 104.
    S. Siwamogsatham and M.P. Fitz, “Improved High-Rate Space-Time Codes Via Concatenation of Expanded Orthogonal Block Code and M-TCM”, in Proc. IEEE Int. Conf. Commun., New York, USA, pp. 636–640, 2002.Google Scholar
  105. 105.
    S. Siwamogsatham and M.P. Fitz, “Robust Space-Time Codes for Corelated Fading Channels”, IEEE Trans. Signal Process., Vol. 50, No. 10, 2002.Google Scholar
  106. 106.
    O. Tirkkonen, A. Boariu, and A. Hottinen, “Minimal Non-Orthogonality Rate 1 Space-Time Block Code for 3+ Tx Antennas”, in Proc. IEEE Veh. Technol. Conf., New Yersey, USA, pp. 429–432, 2000.Google Scholar
  107. 107.
    Jafarkhani H. (2001) “A Quasi-Orthogonal Space-Time Block Code”. IEEE Trans. Commun. 49(1): 1–3zbMATHCrossRefGoogle Scholar
  108. 108.
    W.J. Choi and J.M. Cioffi, “Space-Time Block Codes over Frequency Selective Rayleigh Fading Channels”, in Proc. IEEE Veh. Technol. Conf., Vol. 5, pp. 2541–2545, 1999.Google Scholar
  109. 109.
    E. Lindskog and A. Paulraj, “A Transmit Diversity Scheme for Channels with Intersymbol Interference”, in Proc. IEEE Int. Conf. Commun., pp. 307–311, 2000.Google Scholar
  110. 110.
    S. Mudulodu and A. Paulraj, “A Space-Time Coded Transmitter Technique for Frequency Selective Fading Channel”, in Proc. IEEE Global Telecommun. Conf., pp. 1089–1093, 2000.Google Scholar
  111. 111.
    E.G. Larsson, P. Stoica, E. Lindskog, and J. Li, “Space-Time Block Coding for Frequency-Selective Channels”, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Vol. 3, pp. 2405–2408, 2002.Google Scholar
  112. 112.
    A.L. Swindlehurst and G. Leus, “Blind and Semi-Blind Equalization for Generalized Space-Time Block Codes”, IEEE Trans. Signal Process. Vol. 50, No. 10, 2002.Google Scholar
  113. 113.
    Budianu C., Tong L. (2002) “Channel Estimation for Space-Time Orthogonal Block Codes”. IEEE Trans. Signal Process. 50(10): 2515–2528CrossRefMathSciNetGoogle Scholar
  114. 114.
    Tarokh V., Lo T.K.Y. (1998) “Principal Ratio Combining for Fixed Wireless Application when Transmitter Diversity is Employed”. IEEE Commun. Lett. 2(8): 223–225CrossRefGoogle Scholar
  115. 115.
    Kim Y.J., Yoon S.Y., Lee H.S. (2000) “Generalised Suboptimum Decoding for Space-Time Codes in Qasistatic Flat Fading Channels”. el 36(2): 168–169Google Scholar
  116. 116.
    G.J. Foschini, “Layered Space-Time Architecture for Wireless Communications in a Fading Environment when using Multi-Element Antennas”, The Bell System Technical Journal, pp. 41–59, 1996.Google Scholar
  117. 117.
    H. Huang, H. Viswanathan, and G.J. Foshini, “Achieving High Data Rates in CDMA Systems using BLAST Techniques”, in Proc. IEEE Global Telecommun. Conf., Rio de Janeiro, Brazil, pp. 2316–2320, 1999.Google Scholar
  118. 118.
    Golden G.D., Foschini C.J., Valenzuela R.A., Wolniansky P.W. (1999) “Detection Algorithm and Initial Laboratory Results using V-BLAST Space-Time Communication Architecture”. el 35(1): 14–16Google Scholar
  119. 119.
    B. Hassibi, “An Efficient Square-Root Algorithm for BLAST”, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Vol. 2, pp. 737–740, 2000.Google Scholar
  120. 120.
    S. Baro, G. Bauch, A. Pavlic, and A. Semmler, “Improving BLAST Performance using Space-Time Block Codes and Turbo Decoding”, in Proc. IEEE Global Telecommun. Conf., San Francisco, 2000.Google Scholar
  121. 121.
    X. Li, H. Huang, A. Lozano, and G.J. Foshini, “Reduced-Complexity Detection Algorithms for Systems using Multi-Element Arrays”, in Proc. IEEE Global Telecommun. Conf., San Francisco, USA, pp. 1072–1076, 2000.Google Scholar
  122. 122.
    C.Z.W. Hassell, J.S. Thompson, B. Mulgrew, and P.M. Grant, “A Comparison of Detection Algorithms Including BLAST for Wireless Communication using Multiple Antennas”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., London, UK, 2000.Google Scholar
  123. 123.
    F.R. Farrokhi, A. Lozano, G.J. Foschini, and R.A. Valenzuela, “Spectral Efficiency of Wireless Systems with Multiple Transmit and Receive Antennas”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., London, UK, 2000.Google Scholar
  124. 124.
    Wuebben D., Boehnke R., Rinas J., Kuehn V., Kammeyer K.D. (2001) “Efficient Algorithm for Decoding Layered Space-Time Codes”. Electron Lett. 37(22): 1348–1349CrossRefGoogle Scholar
  125. 125.
    Farrokhi F.R., Foschini G.J., Lozano A., Valenzuela R.A. (2001) “Link-Optimal Spacetime Processing with Multiple Transmit and Receive Antennas”. IEEE Commun. Lett. 5(3): 85–87CrossRefGoogle Scholar
  126. 126.
    Lozano A., Papadias C. (2002) “Layered Space-Time Receivers for Frequency Selective Wireless Channels”, IEEE Trans. Commun. 50(1): 65–73 CrossRefGoogle Scholar
  127. 127.
    Biglieri E., Taricco G., Tulino A. (2002) “Decoding Space-Time Codes with BLAST Architectures”. IEEE Trans. Signal Process. 50(10): 2547–2552CrossRefGoogle Scholar
  128. 128.
    A. Zanella, M. Chiani, M.Z. Win, and J.H. Winters, “Symbol Error Probability of High Spectral Efficiency MIMO Systems”, in Proc. Conf. Inform. Sciences Syst. (CISS), Princeton, USA, 2002.Google Scholar
  129. 129.
    B.A. Bjerke and J.G. Proakis, “Multiple-Antenna Diversity Techniques for Transmission over Fading Channels”, in Proc. IEEE Wireless Commun. Networking Conf., New Orleans, USA, Vol. 3, pp. 1038–1042, 1999.Google Scholar
  130. 130.
    E. Biglieri, G. Taricco, and A. Tulino, “Linear Receivers for Multipleantenna Communication Channels: An Asymptotic Analysis”, in Proc. IEEE Int. Conf. Commun., New York, USA, pp. 1944–1948, 2002.Google Scholar
  131. 131.
    R.V. Nee, A.V. Zelst, and G. Awater, “Maximum Likelihood Decoding in a Space Division Multiplexing System”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, 2000.Google Scholar
  132. 132.
    G. Awater, A.V. Zelst, and R.V. Nee, “Reduced Complexity Space Division Multiplexing Receivers”, in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, 2000.Google Scholar
  133. 133.
    X. Li, H. Huang, G.J. Foshini, and R.A. Valenzuela, “Effects of Iterative Detection and Decoding on the Performance of BLAST”, in Proc. IEEE Global Telecommun. Conf., San Francisco, USA, pp. 1061–1066, 2000.Google Scholar
  134. 134.
    S.L. Ariyavisitakul, “Turbo Space-Time Processing to Improve Wireless Channel Capacity”, in Proc. IEEE Int. Conf. Commun., New Orleans, USA, pp. 1238–1242, 2000.Google Scholar
  135. 135.
    W. Firmanto, J. Yuan, H.L. Lo, and B. Vucetic, “Layered Space-Time Coding: Performance Analysis and Design Criteria”, in Proc. IEEE Global Telecommun. Conf., Texas, USA, pp. 1083–1087, 2001.Google Scholar
  136. 136.
    K.L. Lo, S. Marinkovic, Z. Chen, and B. Vucetic, “Performance Comparison of Layered Space Time Codes”, in Proc. IEEE Int. Conf. Commun., New York, USA, pp. 1382–1387, 2002.Google Scholar
  137. 137.
    B. Hassibi, “An Efficient Square-root Algorithm for BLAST”, The Bell System Technical Journal., 2000.Google Scholar
  138. 138.
    D. Shiu, “Iterative Decoding for Layered Space-Time Codes”, in Proc. IEEE Int. Conf. Commun., New Orleans, USA, 2000.Google Scholar
  139. 139.
    T. Abe and T. Matsumoto, “Space-Time Turbo Equalization and Symbol Detection in Frequency Selective MIMO Channels”, in Proc. IEEE Veh. Technol. Conf., Rhodes, Greece, pp. 1230–1234, 2001.Google Scholar
  140. 140.
    Sellathurai M., Haykin S. (2002) “TURBO-BLAST for Wireless Communications: Theory and Experiments”. IEEE Trans Signal Process. 50(10): 2538–2546CrossRefGoogle Scholar
  141. 141.
    Tarokh V., Naguib A., Seshadri N., Calderbank A.R. (1999) “Combined Array Processing and Space-Time Coding”. IEEE Trans. Inform Theory 45(4): 1121–1128zbMATHCrossRefMathSciNetGoogle Scholar
  142. 142.
    H.J. Su and E. Geraniotis, “Maximum Signal-to-Noise Ratio Array Processing for Space-Time Coded System”, in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., London, UK, 2000.Google Scholar
  143. 143.
    M. Sellathurai and S. Hsykin,“Turbo-Blast for Wireless Communications: Theory and Experiments”, IEEE Trans. Signal Process., Vol. 50, No. 10, Oct. 2002.Google Scholar
  144. 144.
    A. Bernacchioni, E. Del Re, R. Fantacci, and L. Pierucci, “T-BLAST Architecture for the IEEE 802.11b context”, in Proc. IEEE Global Telecommun. Conf., San Francisco, CA, USA, 2003.Google Scholar
  145. 145.
    M. Valenti and B. Woerner, “Performance of Turbo Codes in Interleaved Flat Fading Channels with Estimated Channel State Informaton”, in Vehicular Technology Conference, Vol. 1, pp. 160–174, 1998.Google Scholar
  146. 146.
    E. K. Hall and G. Wilson, “Design and Analysis of Turbo Codes on Rayleigh Fading Channels”, IEEE J. Select. Areas Commun., Vol. 16, 1998.Google Scholar
  147. 147.
    T. R. Giallorenzi and S. G. Wilson, “Multiuser ML Sequence Estimator for Convolutionally-Coded Asynchronous DS-CDMA Systems”, IEEE Trans. Commun., Vol. 44, pp. 997–1008, August 1996.Google Scholar
  148. 148.
    C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Errorcorrecting Coding and Decoding: Turbo codes”, in Proc. 1993 Int. Conf. on Communications (ICC’93), Washington DC, USA,, pp. 34, June 2001.Google Scholar
  149. 149.
    Gitlin R.D., Saltz J., Winter J.H. (1994) “The Impact of Antenna Diversity on the Capacity of Wireless Communication systems”. IEEE Trans. Commun. 42(4): 1740–1751CrossRefGoogle Scholar
  150. 150.
    Saltz and J. H. Winter, “Effects of Fading Correlation on Adaptive Arrays in Digital Mobile Radio”, IEEE Transactions on Vehicular Technology, Vol. 43, No. 4, pp. 1049–1057, 1994. Paper_reconfigurable_antenna_ Revised_kluwer_final.tex; 2/07/2006; 19:13; pp. 27–28.Google Scholar
  151. 151.
    N. Kong, “Space-Time Multistage Parallel Interference Cancellation (MPIC) for CDMA”, in Vehicular Technology Conference, pp. 2826–2833, 2000.Google Scholar
  152. 152.
    G. Foschini and M. Gans, “On Limits of Wireless Communication in a Fading Environmentwhen using Multiple Antennas", in Wireless Personal Communication, Kluver Academic Publishers, pp. 311–335, 1998.Google Scholar
  153. 153.
    W. Rhee, W. Yu, and J. Cioffi, “Utilizing Multiuser Diversity for Multiple Antenna Systems”, in Wireless Communication and Networking Conference, Vol. 1, pp. 420–425, 2000.Google Scholar
  154. 154.
    W. Rhee and J. Cioffi, “Ergodic Capacity of Multi-Antenna Gaussian Multiple-Access Channels”, in Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, Vol. 1, pp. 507–512, 2001.Google Scholar
  155. 155.
    S. Morosi, E. Del Re, R. Fantacci, and A. Bernacchioni,“Improved Iterative Parallel Iterference Cancellation Receiver for DS-CDMA 3G Systems", in Proc. of the IEEE Wireless Communications and Networking Conference (WCNC 2003), Vol. 2, pp. 877–882, March 2003.Google Scholar
  156. 156.
    S. Morosi, E. Del Re, and O. Gremigni, “Turbo PIC and Antenna Diversity for DS-CDMA Communications in Wireless Block Fading Channel”. in Proc. IEEE Int. Symp. Pers., Indoor, Mobile Radio Commun., Lissabon, Portugal, Sept. 2004.Google Scholar
  157. 157.
    B. Cho, D. Choi, S. Lee, and Y. Oh, “Performance of the Improved PIC Receiver for DS-CDMA over Rayleigh Fading Channels", in Proc. of ISSSTA, pp. 45–49, Sept. 2000.Google Scholar
  158. 158.
    P. Leppänen, J. Reinilä, A. Nykänen, V. Tapio, M. Isohookana, J. Pyhtilä, T. Kokkonen, and J. Sillanpää “Software Radio - An Alternative for the Future in Wireless Personal and Multimedia Communication”, Personal Wireless Communication, pp. 364–368, 1999.Google Scholar
  159. 159.
    W. H. W. Tuttlebee, “Software Defined Radio Enabling Technologies”, Wiley, 2002.Google Scholar
  160. 160.
    Mitola III, “The Software Radio Architecture”, IEEE Communications Magazine, pp. 26–38, March 1996.Google Scholar
  161. 161.
    J. E. Gunn, K. S. Barron, and W. Ruczczyk “A Low-Power DSP Core-Based Software Radio Architecture”, IEEE Journal on Selected Areas in Communications, Vol. 17, No. 4, April 1999.Google Scholar
  162. 162.
    E. Del Re, “Software Radio Technologies and Services”, Springer, September 2000.Google Scholar
  163. 163.
    Weidong and Y. Yan “Software Radio: Technology & Implementation”, ICCT ’98, October 1998.Google Scholar
  164. 164.
    W. H. W. Tuttlebee, “Software-Defined radio: Facets of a Developing Technology”, IEEE Wireless Communications, vol. 12 No. 6, pp. 245–248, December 2000.Google Scholar
  165. 165.
    J. Hoffmeyer, Il-Pyung Park, M. Majmundar, and S. Blust “Radio Software Download for Commercial Wireless Reconfigurable Devices”, pp: S26–S32.Google Scholar
  166. 166.
    Bertini, E. Del Re, and L. S. Ronga, “RADL-C: an Embedded Compiler for Remote Physical Layer Reconfiguration”, Eighth International Workshop on Signal Processing for Space Communications, Sept. 2003, Catania.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • E. Del Re
    • 1
  • S. Morosi
    • 1
    Email author
  • D. Marabissi
    • 1
  • L. Mucchi
    • 1
  • L. Pierucci
    • 1
  • L. S. Ronga
    • 1
  1. 1.Dipartimento di Elettronica e TelecomunicazioniUniversità di FirenzeFirenzeItaly

Personalised recommendations