Advertisement

Wireless Personal Communications

, Volume 42, Issue 3, pp 367–386 | Cite as

Modelling, Performance Analysis and Design of WPAN Systems

  • Ana García-ArmadaEmail author
  • Beatriz Bardón Rodríguez
  • Víctor P. Gil Jiménez
  • Matilde Sánchez-Fernández
Article

Abstract

This paper covers the main issues that must be solved in order to design and analyse the performance of Wireless Personal Area Networks (WPANs) with the aid of simulation tools. We review state-of-the-art channel models to account for small- and large-scale propagation conditions in waveform- and system-level simulations. When dealing with waveform simulations, we also look at Montecarlo and importance sampling techniques that allow efficient estimation of error probabilities. Additionally, discrete channel models are introduced to efficiently link both waveform- and system-level approaches and we point out some methods to obtain the model parameters that are suitable for the wireless environment. The discussion of these techniques is complemented with two application examples that show the use of the different simulation levels for system design and performance study. With the paradigm of Bluetooth piconets we illustrate the usefulness of discrete channel models and we consider the design of an OFDM-based WPAN system to exemplify simulation from a waveform-level point of view.

Keywords

WPAN systems simulation discrete channel models Bluetooth H-OFDM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. García Armada, V. P. Gil Jiménez, M. J. Fernández-Getino García and J. L. García. “H-OFDM design for Wireless Personal Area Communications”, Proceeding of IST Mobile & Wireless Communications Summit, Aveiro, Portugal, Vol. I, pp. 93–97, 2003.Google Scholar
  2. 2.
    Jeruchim M., Balaban P., Shanmugan K.S., (2000). Simulation of Communication Systems, 2nd edn. New York, Plenum Publishing CorpGoogle Scholar
  3. 3.
    Rappaport T.S., (1996) Wireless Communications. Principles & Practice, Englewood Cliffs, NJ, Prentice HallGoogle Scholar
  4. 4.
    A. García Armada, M. J. Fernández-Getino, V. P. Gil Jiménez, M. Lobeira, J. C. González. J. L. García and B. Bougard. “Analysis and simulation of physical layer requirements. Synchronisation, PAR reduction and resource assignment algorithms. RF specifications”, IST-2001–34157, Deliverable D.4.2.3, September 2003. www.imec.be/pacwoman.Google Scholar
  5. 5.
    G. J. M. Janssen, P. A. Stigter and R.Prasad, “Wideband Indoor Channel Measurements and BER Analysis of Frequency Selective Multipath Channels at 2.4, 4.75, and 11.5 GHz”, IEEE Transactions on Communications, Vol 44. No. 10, pp. 1272–1288, 1996.Google Scholar
  6. 6.
    Saleh A.A., Valenzuela R.A., (1987). “A Statistical Model for Indoor Multipath Propagation”. IEEE Journal on Selected Areas in Communications, 5(2): 128–137CrossRefGoogle Scholar
  7. 7.
    W. M. Teck and L. C. Look, “Wideband impulse response of indoor channel at 2 GHz using directive patch antennae”, IEEE International Conference on Information Engineering (ICIE), pp. 532–536, Singapore, 1995.Google Scholar
  8. 8.
    Jeruchim M.C., (1984). “Techniques for Estimating the Bit Error Rate in the Simulation of Digital Communication Systems”. IEEE Journal on Selected Areas in Communications, 2(1): 153–170CrossRefGoogle Scholar
  9. 9.
    Lu D., Yao K., (1988). “Improved Importance Sampling Technique for Efficient Simulation of Digital Communication Systems”. IEEE Journal on Selected Areas in Communications, 6(1): 67–74CrossRefGoogle Scholar
  10. 10.
    P. Hahn and M. C. Jeruchim, “Developments in the Theory and Application of Importance Sampling”, IEEE Transactions on Communications, Vol. COM-35, No. 7, pp. 706–714, 1987.Google Scholar
  11. 11.
    Motley A.J., Keenan J.M.P., (1988). “Personal communication radio coverage in buildings at 900MHz and 1700MHz”. Electronic Letters, 24(12): 763–761CrossRefGoogle Scholar
  12. 12.
    S. Sivaprakasam and K. S. Shanmugan, “An equivalent Markov model for burst errors in digital channels”, IEEE Transactions on Communications, Vol. 43, No. 2/3/4, pp. 1347–1353, 1995.Google Scholar
  13. 13.
    B. Bardón, M. Sánchez and A. García, “Discrete Channel Simulation of Bluetooth Piconets”, International Workshop on Broadband Wireless Ad-Hoc Networks and Services, ETSI, Sophia Antipolis, Francia, September 2002.Google Scholar
  14. 14.
    S. Mattisson et al, “Bluetooth Core Specifiations”, Bluetooth SIG, February 2001.Google Scholar
  15. 15.
    J. C. Haarten et al., “The Bluetooth Radio System”, IEEE Personal Communications, Vol. 7, No. 1, pp. 28–36 February 2000.Google Scholar
  16. 16.
    K.S. Shanmugan and A. Beverly, “Hidden Markov Models for Burst Errors in GSM and DECT Channels”, Proceedings of Globecom ‘98, Vol. 6, pp. 3692–3698, Sydney, Australia Nov. 1998.Google Scholar
  17. 17.
    P. Kuczynsky et al., “Hidden Markov Modeling of Error Patterns and Soft Outputs for Simulation of Wideband CDMA Transmission Systems”, European Conference on Wireless Technology (ECWT), pp. 135–138, Paris, October 2000.Google Scholar
  18. 18.
    A. Umbert et al., “A Radio Channel Emulator for WCDMA Based on the Hidden Markov Model (HMM) ”, IEEE Vehicular Technology Conference (VTC), pp. 2173–2179, Boston, September 2000.Google Scholar
  19. 19.
    F. Catthoor, L. Deneire, J. Ayadi, A. Hutter, C. Wijting, L. Gavrilovska, H. Yomo, E. Metin, J. Choque, M. García, V. Gutiérrez, J. Irastorza, L. Muñoz, R. Sanz, S. Kyriazakos, V. Owall and R. Velentzas, T. Charity, J. Spanoudakis, “System Requirements and Analysis”, PACWOMAN (IST-2001–34157) Deliverable, D2.1, June 2002, www.imec.be/pacwoman.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ana García-Armada
    • 1
    Email author
  • Beatriz Bardón Rodríguez
    • 1
  • Víctor P. Gil Jiménez
    • 1
  • Matilde Sánchez-Fernández
    • 1
  1. 1.University Carlos III de MadridLeganésSpain

Personalised recommendations