Advertisement

Wireless Personal Communications

, Volume 32, Issue 3–4, pp 339–356 | Cite as

Enhancing Transport Layer Capability in HAPS–Satellite Integrated Architecture

  • C. E. PalazziEmail author
  • C. Roseti
  • M. Luglio
  • M. Gerla
  • M. Y. Sanadidi
  • J. Stepanek
Article

Abstract

The use of HAPS/UAV to enhance telecommunication capabilities has been proposed as an effective solution to support hot spot communications in limited areas. To ensure communication capabilities even in case of emergency (earthquake, power blackout, chemical/nuclear disaster, terrorist attack), when terrestrial fixed and mobile infrastructures are damaged or become unavailable, the access to satellites represents a reliable solution with worldwide coverage, even though it may suffer from shadowing impairment, especially in an urban environment. In this paper we approach an innovative and more challenging architecture foreseeing HAPS/UAV connected to the satellite in order to enlarge coverage and to allow interconnection with very remote locations. In this scenario, we have analysed TCP-based applications proposing some innovative techniques, both at protocol and at architectural level, to improve performance. In particular, we propose the use of a PEP technique, namely splitting, to speed up window growth in spite of high latency, combined with TCP Westwood as a very efficient algorithm particularly suitable and well performing over satellite links.

Keywords

HAPS UAV TCP satellite splitting TCP Westwood 

Abbreviations

ABSE

Adaptive Bandwidth Share Estimation

ARQ

Automatic Repeat Request

ERE

Eligible Rate Estimate

HAPS

High-Altitude Platform Station

RTT

Round-Trip Time

TCP

Transmission Control Protocol

UAV

Unmanned Aerial Vehicle

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Avagnina, F. Dovis, A. Ghiglione, and P. Mulassano, “Wireless Networks Based on High-Altitude Platforms for the Provision of Integrated Navigation/Communication Services”, IEEE Communications Magazine, Vol. 40, No. 2, pp. 119–125, 2002.CrossRefGoogle Scholar
  2. H. Balakrishnan, V.N. Padmanabhan, S. Sehan, and R.H. Katz, ‘A comparison of Mechanism for Improving TCP Performance Over Wireless Links’, IEEE/ACM Transactions on Networking, Vol. 5, No. 6, pp. 756–769, 1997.CrossRefGoogle Scholar
  3. L. Baldantoni, H. Lundqvist, and G. Karlsson, “Adaptive End-to-End FEC for Improving TCP Performance Over Wireless Links”, in ICC 2004.Google Scholar
  4. J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, ‘RFC 3135: Performance Enhancing Proxies Intended to Mitigate Link-Related Degradations’, IETF RFC 3135, June 2001.Google Scholar
  5. L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances in Network Simulation”, IEEE Computer, Vol. 33, No. 5, pp. 59–67, 2000. Expanded version available as USC TR 99-702b at http://www.isi.edu/~johnh/PAPERS/Bajaj99a.html.
  6. R. Càceres and L. Iftode, “The Effects of Mobility on Reliable Transport Protocols”, in Proceedings of the 14th International Conference on Distributed Computing Systems, pp. 12–20, 1994.Google Scholar
  7. E. Corazza and F. Vatalaro, “A Statistical Model for Land Mobile Satellite Channels and its Application to Nongeostationary Orbit Systems”, IEEE Transactions on Vehicular Technolgy, Vol. VT-43, pp. 738–741, 1994.CrossRefGoogle Scholar
  8. C. Dovrolis, P. Ramanathan, and D. Moore, “What do Packet Dispersion Techniques Measure?”, in IEEE Infocom ‘01, Anchorage, Alaska, 2001.Google Scholar
  9. S. Floyd and T. Henderson, ‘The NewReno Modification to TCP’s Fast Recovery Algorithm’, IETF RFC 2582, April 1999.Google Scholar
  10. F.P. Fontán, M.A. Vázquez, S. Buonomo, E. Kubista, and A. Paraboni, “A methodology for the Characterisation of Environmental Effects on Global Navigation Satellite System (GNSS) Propagation”, International Journal of Satellite Communications, Vol. 16, pp. 1–22, 1998.CrossRefGoogle Scholar
  11. S. Karapantazis and F.-N. Pavlidou, “Broadband from Heaven”, IEE Communications Engineer, Vol. 2, No. 2, 2004.Google Scholar
  12. P. Loreti and M. Luglio, “Satellite Diversity: A Technique to Improve Link Performance and Availability for Multicoverage Constellations”, in 3rd Generation Mobile Communication Systems, UMTS and IMT-2000. Springer Verlag, Berlin, 2001a.Google Scholar
  13. P. Loreti and M. Luglio, “A generalized N-State Model to Characterize Satellite Diversity for Arbitrary Number of Satellites in Case of Uncorrelated Channels”, IEEE Communications Letters, Vol. 5, No. 11, pp. 447–449, 2001b.CrossRefGoogle Scholar
  14. M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and J. Crowcroft, ‘Forward Error Correction (FEC) Building Block’, IETF RFC 3452, December 2002.Google Scholar
  15. M. Luglio, M.Y. Sanadidi, M. Gerla, and J. Stepanek, “On-board Satellite “Split TCP” Proxy”, IEEE Journal of Selected Areas in Communications, Special Issue on “Broadband IP Networks via Satellites”, Vol. 22, No. 4, pp. 362–370, 2004.Google Scholar
  16. H. Lundqvist and G. Karlsson, “TCP with End-to-End Forward Error Correction”, in International Zurich Seminar on Communications (IZS 2004), 2004.Google Scholar
  17. E. Lutz, “A Markoff Model for Correlated Land Mobile Satellite Channels”, International Journal of Satellite Communications, Vol. 14, pp. 333–339, 1996.CrossRefGoogle Scholar
  18. E. Lutz, D. Cygan, M. Dippold, F. Dolainsky, and W. Papke, “The Land Mobile Satellite Channel – Recording, Statistics and Channel Model”, IEEE Transactions on Vehicular Technolgy, Vol. VT-40, 1991.Google Scholar
  19. S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang, “TCP Westwood: End-to-End Bandwidth Estimation for Efficient Transport Over Wired and Wireless Networks”, in Proceedings of the Seventh Annual International Conference on Mobile Computing and Networking (MOBICOM-01), New York, pp. 287–297, 2001.Google Scholar
  20. F. Mazzenga and F. Vatalaro, ‘Channel Modeling and Performance Evaluation of LEO Systems’, in AP2000 Davos, Switzerland, 2000.Google Scholar
  21. C.E. Palazzi, C. Roseti, M. Luglio, M. Gerla, M.Y. Sanadidi, and J. Stepanek, “Satellite Coverage in Urban Areas Using Unmanned Airborne Vehicles (UAVs)”, in IEEE Vehicular Technology Conference, Milan, Italy, 2004.Google Scholar
  22. J. Stepanek, A. Razdan, A. Nandan, M. Gerla, and M. Luglio, “The Use of a Proxy on Board the Satellite to Improve TCP Performance”, in IEEE Global Telecommunications Conference (Globecom), Vol. 21. pp. 2957–2961, 2002.Google Scholar
  23. J. Thornton, D. Grace, C. Spillard, T. Konefal, and T. Tozer, “Broadband Communications from a High Altitude Platforms”, IEE Electronics and Communications Engineering Journal, Vol. 13, No. 3, pp. 138–144, 2001.Google Scholar
  24. T.C. Tozer and D. Grace, “High-Altitude Platforms for Wireless Communications”, Electronics & Communication Engineering Journal, Vol. 13, No. 3, pp. 127–137, 2001.Google Scholar
  25. R. Wang, M. Valla, M. Sanadidi, B.K.F. Ng, and M. Gerla, “Efficiency/Friendliness Tradeoffs in TCP Westwood”, in Seventh IEEE Symposium on Computers and Communications, Taormina, Italy, 2002a.Google Scholar
  26. R. Wang, M. Valla, M.Y. Sanadidi, and M. Gerla, “Adaptive Bandwidth Share Estimation in TCP Westwood”, in Proceedings of the IEEE Globecom 2002, Taipei, Taiwan, ROC, 2002.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • C. E. Palazzi
    • 1
    Email author
  • C. Roseti
    • 3
  • M. Luglio
    • 3
  • M. Gerla
    • 2
  • M. Y. Sanadidi
    • 2
  • J. Stepanek
    • 2
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità di BolognaBolognaItaly
  2. 2.Computer Science DepartmentUniversity of California Los AngelesLos AngelesU.S.A.
  3. 3.Dipartimento di Ingegneria ElettronicaUniversità di Roma Tor VergataRomeItaly

Personalised recommendations