Skip to main content
Log in

Multiple parameter decision for backoff counter optimization of medical body area network

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Medical Body Area Networks are emerging as remote healthcare solutions where many sensors monitor the physiological parameters of the human body and communicate the data to a central hub. In this work, the goal has been to improve the reliability of data transmission using the Carrier Sense Multiple Access with Collision Avoidance protocol used in the medium access control layer. The authors propose an algorithm for optimizing backoff counter value using a multi-parameter decision-making algorithm called Criteria Importance through Intercriteria Correlation (CRITIC). We use CRITIC for deciding the user priority and backoff counter values, to reduce collisions and improve the reliability of medical body area networks. The work has evolved into three parts, the first part being the use of CRITIC to determine the sensor node’s priority when multiple nodes with different packet sizes and data rates are ready for data transmission. The second part was to use CRITIC to compute the backoff counter value depending on node parameters. These new values have the advantage that they are dependent on the weights of various parameters associated with the sensor node and therefore minimize the waiting time. Thirdly, a Markov chain-based analytical model has been presented to obtain the expression for performance metrics such as reliability, probability of transmission, probability of channel access failure, and probability of packet drop due to maximum retransmission limit. Simulation have been done for 10 practical sensor nodes with various distinct parameters using MATLAB. The results validate that the CRITIC backoff counter value in IEEE 802.15.6 standard enhances the reliability as compared with the conventional IEEE 802.15.6 backoff counter value. The results in this work show that the probability of packet drop reduces from 0.93 to 0.49.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications surveys & Tutorials, 16(3), 1658–1686. https://doi.org/10.1109/SURV.2013.121313.00064

    Article  Google Scholar 

  2. Bradai, N., Belhaj, S., Chaari, L., & Kamoun, L. (2011). Study of medium access mechanisms under IEEE 802.15.6 standard. In 2011 4th joint IFIP wireless and mobile networking conference (WMNC 2011), Toulouse, France, pp. 1–6. https://doi.org/10.1109/WMNC.2011.6097231

  3. Ullah, S., Mohaisen, M., & Alnuem, M. A. (2013). A review of IEEE 802.15.6 MAC, PHY, and security specifications. International Journal of Distributed Sensor Networks, 9(4), 950704. https://doi.org/10.1155/2013/950704

    Article  Google Scholar 

  4. Fourati, H., Idoudi, H., & Saidane, L. A. (2016) A novel IEEE 802.15.6 CSMA/CA service differentiation. In 2016 IEEE/ACS 13th international conference of computer systems and applications (AICCSA) (pp. 1–7). IEEE, 2016. https://doi.org/10.1109/AICCSA.2016.7945686.

  5. Dadhich, K., & Kataria, D. (2023) Wearable IoT using MBANs. In Applied intelligence in human–computer interaction (pp. 113–127). CRC Press.

  6. Liu, Q., Mkongwa, K. G., & Zhang, C. (2021). Performance issues in wireless body area networks for the healthcare application: A survey and future prospects. In SN Applied Sciences, 3(2), 2021.

    Article  Google Scholar 

  7. Kwak, K. S., Ullah, S., & Ullah, N. (2010). An overview of IEEE 802.15.6 standard. In 2010 3rd international symposium on applied sciences in biomedical and communication technologies (ISABEL 2010) (pp. 1–6). IEEE.

  8. Kaitalidou, D. S., Boulogeorgos, A. A. A., & Pavlidou, F. N. (2016). Comparison of CSMA/CA protocols applied in wireless body area network standards. In 2016 18th mediterranean electrotechnical conference (MELECON) (pp. 1–6). IEEE.

  9. Kurunathan, J. H. (2015). Study and overview on WBAN under IEEE 802.15.6. U. Porto Journal of Engineering, 1(1), 11–21.

    Article  Google Scholar 

  10. Kaur, T., & Kumar, D. (2019). QoS mechanisms for MAC protocols in wireless sensor networks: a survey. IET Communications, 13(14), 2045–2062. https://doi.org/10.1049/iet-com.2018.5110

    Article  Google Scholar 

  11. Kim, B. S., Shah, B., He, T., & Kim, K. I. (2022). A survey on analytical models for dynamic resource management in wireless body area networks. Ad Hoc Networks, 135, 102936. https://doi.org/10.1016/j.adhoc.2022.102936

    Article  Google Scholar 

  12. Huang, W., & Quek, T. Q. S. (2015). Adaptive CSMA/CA MAC protocol to reduce inter-WBAN interference for wireless body area networks. In Proceedings of the IEEE International Conference on Wearable & Implantable BSN. Cambridge, MA, pp. 1–6.

  13. Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1994). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763–770.

    Article  Google Scholar 

  14. Zizovic, M., Miljkovic, B., & Marinkovic, D. (2020). Objective methods for determining criteria weight coefficients: A modification of the CRITIC method. Decision Making: Applications in Management and Engineering, 3(2), 149–161. https://doi.org/10.31181/dmame2003149z

    Article  Google Scholar 

  15. Odu, G. O. (2019). Weighting methods for multi-criteria decision making technique. Journal of Applied Sciences and Environmental Management, 23(8), 1449–1457. https://doi.org/10.4314/jasem.v23i8.7

    Article  Google Scholar 

  16. Akpahou, R., & Odoi-Yorke, F. (2023). A multicriteria decision-making approach for prioritizing renewable energy resources for sustainable electricity generation in Benin. Cogent Engineering, 10(1), 2204553. https://doi.org/10.1080/23311916.2023.2204553

    Article  Google Scholar 

  17. Rashwand, S., & Mišić, J. (2012). Effects of access phases lengths on performance of IEEE 802.15.6 CSMA/CA. Computer Networks, 56(12), 2832–2846. https://doi.org/10.1016/j.comnet.2012.04.023

    Article  Google Scholar 

  18. Sarkar, S., Misra, S., Bandyopadhyay, B., Chakraborty, C., & Obaidat, M. S. (2015). Performance analysis of IEEE 802.15.6 MAC protocol under non-ideal channel conditions and saturated traffic regime. IEEE Transactions on computers, 64(10), 2912–2925. https://doi.org/10.1109/TC.2015.2389806

    Article  MathSciNet  Google Scholar 

  19. Touijer, B., Maissa, Y. B., & Mouline, S. (2021). IEEE 802.15.6 CSMA/CA access method for WBANs: “Performance evaluation and new backoff counter selection procedure. Computer Networks, 188, 107759. https://doi.org/10.1016/j.comnet.2020.107759

    Article  Google Scholar 

  20. Benmansour, T., Ahmed, T., Moussaoui, S., & Doukha, Z. (2020). Performance analyses of the IEEE 802.15.6 wireless body area network with heterogeneous traffic. Journal of Network and Computer Applications, 163, 02651. https://doi.org/10.1016/j.jnca.2020.102651

    Article  Google Scholar 

  21. Fourati, H., Idoudi, H., & Saidane, L. A. (2018). Intelligent slots allocation for dynamic differentiation in IEEE 802.15.6 CSMA/CA. Ad Hoc Networks, 72, 27–43. https://doi.org/10.1016/j.adhoc.2018.01.007

    Article  Google Scholar 

  22. Samal, T., & Kabat, M. R. (2021). A prioritized traffic scheduling with load balancing in wireless body area networks. Journal of King Saud University-Computer and Information Sciences, 34(8), 5448–5455. https://doi.org/10.1016/j.jksuci.2020.12.023

    Article  Google Scholar 

  23. Zia, Y., Bashir, F., & Qureshi, K. N. (2020). Dynamic superframe adaptation using group-based media access control for handling traffic heterogeneity in wireless body area networks. International Journal of Distributed Sensor Networks, 16(8), 155014772094914. https://doi.org/10.1177/1550147720949140

    Article  Google Scholar 

  24. Chen, D.-R., & Chiu, W.-M. (2018). Collaborative link-aware protocols for energy-efficient and QoS wireless body area networks using integrated sensors. IEEE Internet of Things Journal, 5(1), 132–149. https://doi.org/10.1109/JIOT.2017.2775048

    Article  Google Scholar 

  25. Liang, B., Liu, X., Zhou, H., Leung, V. C. M., Liu, A., & Chi, K. (2021). Channel resource scheduling for stringent demand of emergency data transmission in WBANs. IEEE Transactions on Wireless Communications, 20(4), 2341–2352. https://doi.org/10.1109/TWC.2020.3041471

    Article  Google Scholar 

  26. He, M., Hu, F., Ling, Z., Mao, Z., & Huang, Z. (2021). A dynamic weights algorithm on information and energy transmission protocol based on WBAN. IEEE Transactions on Vehicular Technology, 70(2), 1528–1537. https://doi.org/10.1109/TVT.2021.3053964

    Article  Google Scholar 

  27. Saboor, A., Ahmad, R., Ahmed, W., Kiani, A. K., Alam, M. M., Kuusik, A., & Moullec, Y. L. (2020). Dynamic slot allocation using non overlapping backoff algorithm in IEEE 802.15.6 WBAN. IEEE Sensors Journal, 20(18), 10862–10875. https://doi.org/10.1109/JSEN.2020.2993795

    Article  Google Scholar 

  28. Enkoji, A., Li, M., Brisky, J. D., & Melvin, R. (2019). Dynamic EAP based MAC protocol for wireless body area networks. In 2019 international conference on computing, networking and communications (ICNC) (pp. 531–536). Honolulu, HI, USA. https://doi.org/10.1109/ICCNC.2019.8685495.

  29. Khan, P., Ullah, N., Ali, F., Ullah, S., Hong, Y.-S., Lee, K.-Y., & Kim, H. (2017). Performance analysis of different backoff algorithms for WBAN-based emerging sensor networks. Sensors, 17(3), 492. https://doi.org/10.3390/s17030492

    Article  Google Scholar 

  30. Saboor, A., Ahmad, R., Ahmed, W., & Alam, M. M. (2019). A unique backoff algorithm in IEEE 802.15.6 WBAN. In 2018 IEEE 88th vehicular technology conference (VTC-Fall), IEEE, (pp. 1–5). https://doi.org/10.1109/VTCFall.2018.8690812.

  31. Das, K., & Moulik, S. (2021). PBCR: Parameter-based backoff counter regulation in IEEE 802.15.6 CSMA/CA. In 2021 international conference on communication systems & Networks (COMSNETS), IEEE, (pp. 565–571). https://doi.org/10.1109/COMSNETS51098.2021.9352747.

  32. Das, K., Moulik, S., & Chang, C. Y. (2021). Priority-based dedicated slot allocation with dynamic superframe structure in IEEE 802.15.6-based Wireless Body Area Networks. IEEE Internet of Things Journal, 9(6), 4497–4506. https://doi.org/10.1109/JIOT.2021.3104800

    Article  Google Scholar 

  33. Mukherjee, A., Bandyopadhyay, B., Das, D., Chatterjee, A., Ahmed, Sk. J., & Naskar, M. (2014). Markov chain based analysis of IEEE 802.15.6 MAC protocol in real life scenario. In Proceedings of the 9th international conference on body area networks, London, Great Britain. https://doi.org/10.4108/icst.bodynets.2014.257202.

  34. Dadhich, K., & Kataria, D. (2022). Effect of channel slot time on performance of IEEE 802.15.6-based medical body area network. In Advanced network technologies and intelligent computing. ANTIC 2022. Communications in computer and information science, Vol. 1797. Springer, Cham. https://doi.org/10.1007/978-3-031-28180-8_25.

  35. Kim, B.-S., Shah, B., & Kim, K.-I. (2022). Resource allocation in wireless body area networks: a smart city perspective. In Emerging Trends in Wireless Sensor Networks. IntechOpen. https://doi.org/10.5772/intechopen.102325.

Download references

Acknowledgements

The authors acknowledge using ChatGPT for the Introduction section of this paper. We also acknowledge the JK Lakshmipat University for support on the MATLAB license and other resources related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushboo Dadhich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadhich, K., Kataria, D. Multiple parameter decision for backoff counter optimization of medical body area network. Wireless Netw (2024). https://doi.org/10.1007/s11276-024-03741-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-024-03741-1

Keywords

Navigation