Skip to main content
Log in

Queue stability and dynamic throughput maximization in multi-agent heterogeneous wireless networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The Industrial Internet of Things (IIoT) envisions enhanced surveillance and control for industrial applications through diverse IoT devices. However, the increasing heterogeneity of deployed end devices poses challenges to current practices, hampering overall performance as device numbers escalate. To tackle this issue, we introduce an innovative distributed power control algorithm leveraging the wireless channel's nature to approximate the centralized maximum-weight scheduling algorithm. Employing ubiquitous multi-protocol mobile devices as intermediaries, we propose a concurrent dual-hop/multi-hop backhauling strategy, improving interoperability and facilitating data relay, translation, and forwarding from end IoT devices. Our focus is directed towards addressing large-scale network stability and queue management challenges. We formulate a long-term time-averaged optimization problem, incorporating considerations of end-to-end rate control, routing, link scheduling, and resource allocation to guarantee essential network-wide throughput. Furthermore, we present a real-time decomposition-based approximation algorithm that ensures adaptive resource allocation, queue stability, and meeting Quality of Service (QoS) constraints with the highest energy efficiency. Comprehensive numerical results verify significant energy efficiency improvements across diverse traffic models, maintaining throughput requirements for both uniform and hotspot User Equipment (UE) distribution patterns. This work offers a comprehensive solution to enhance IIoT performance and address evolving challenges in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Attar, H., Khosravi, R., Ababneh, J., Amer, A., & Solyman, A. (2023). A modified grid search-based optimization for possibly repetitive global extremum with an application to edge intelligence in IIoT towards time-domain signals. Wireless Networks, pp. 1–13

  2. Huang, K., Liu, W., Li, Y., & Vucetic, B. (2019). To sense or to control: Wireless networked control using a half-duplex controller for IIoT. In 2019 IEEE global communications conference (GLOBECOM) (pp. 1–6). IEEE.

  3. Mohajer, A., Bavaghar, M., & Farrokhi, H. (2020). Mobility-aware load balancing for reliable self-organization networks: Multi-agent deep reinforcement learning. Reliability Engineering & System Safety, 202, 107056.

    Article  Google Scholar 

  4. Abdi Nasib Far, H., Bayat, M., Kumar Das, A., Fotouhi, M., Pournaghi, S. M., & Doostari, M. A. (2021). LAPTAS: Lightweight anonymous privacy-preserving three-factor authentication scheme for WSN-based IIoT. Wireless Networks, 27(2), 1389–1412.

    Article  Google Scholar 

  5. Nikjoo, F., Mirzaei, A., & Mohajer, A. (2018). A novel approach to efficient resource allocation in NOMA heterogeneous networks: Multi-criteria green resource management. Applied Artificial Intelligence, 32(7–8), 583–612.

    Article  Google Scholar 

  6. Liu, Y., Kashef, M., Lee, K. B., Benmohamed, L., & Candell, R. (2019). Wireless network design for emerging IIoT applications: Reference framework and use cases. Proceedings of the IEEE, 107(6), 1166–1192.

    Article  Google Scholar 

  7. Wang, Bo., Wang, X., Wang, N., Javaheri, Z., Moghadamnejad, N., & Abedi, M. (2023). Machine learning optimization model for reducing the electricity loads in residential energy forecasting. Sustainable Computing: Informatics and Systems, 38, 100876.

    Google Scholar 

  8. Ma, H., Lijuan, Xu., Javaheri, Z., Moghadamnejad, N., & Abedi, M. (2023). Reducing the consumption of household systems using hybrid deep learning techniques. Sustainable Computing: Informatics and Systems, 38, 100874.

    Google Scholar 

  9. Dong, S., Zhan, J., Hu, W., Mohajer, A., Bavaghar, M., & Mirzaei, A. (2023). Energy-efficient hierarchical resource allocation in uplink-downlink decoupled NOMA HetNets. IEEE Transactions on Network and Service Management

  10. Zheng, J., Yang, T., Liu, H., & Tao, Su. (2020). Efficient data transmission strategy for IIoTs with arbitrary geometrical array. IEEE Transactions on Industrial Informatics, 17(5), 3460–3468.

    Article  Google Scholar 

  11. Mohajer, A., Barari, M., & Zarrabi, H. (2016). QoSCM: QoS-aware coded multicast approach for wireless networks. KSII Transactions on Internet and Information Systems (TIIS), 10(12), 5191–5211.

    Google Scholar 

  12. Jiang, Y., Zhong, Yi., & Ge, X. (2021). IIoT data sharing based on blockchain: A multileader multifollower Stackelberg game approach. IEEE Internet of Things Journal, 9(6), 4396–4410.

    Article  Google Scholar 

  13. Li, X., Li, Di., Wan, J., Vasilakos, A. V., Lai, C.-F., & Wang, S. (2017). A review of industrial wireless networks in the context of Industry 4.0. Wireless networks, 23, 23–41.

    Article  Google Scholar 

  14. Wu, Y., Dai, H.-N., & Wang, H. (2020). Convergence of blockchain and edge computing for secure and scalable IIoT critical infrastructures in industry 4.0. IEEE Internet of Things Journal, 8(4), 2300–2317.

    Article  Google Scholar 

  15. Wang, T., Li, W., Rong, H., Yue, Z., & Zhou, J. (2022). Abnormal traffic detection-based on memory augmented generative adversarial IIoT-assisted network. Wireless Networks, 28(6), 2579–2595.

    Article  Google Scholar 

  16. Mohajer, A., Barari, M., & Zarrabi, H. (2017). Big data based self-optimization networking: A novel approach beyond cognition. Intelligent Automation & Soft Computing, PP. 1–7.

  17. Gbadamosi, S. A., Hancke, G. P., & Abu-Mahfouz, A. M. (2023). Adaptive interference-avoidance and mode selection scheme for D2D-enabled small cells in 5G-IIoT networks. IEEE Transactions on Industrial Informatics.

  18. Zhou, Z., Guo, Y., He, Y., Zhao, X., & Bazzi, W. M. (2019). Access control and resource allocation for M2M communications in industrial automation. IEEE Transactions on Industrial Informatics, 15(5), 3093–3103.

    Article  Google Scholar 

  19. Mohan, A., Gopalan, A., & Kumar, A. (2020). Reduced-state, optimal scheduling for decentralized medium access control of a class of wireless networks. IEEE/ACM Transactions on Networking, 28(3), 1017–1032.

    Article  Google Scholar 

  20. Yang, C., Xiangxue Li, YuYu., & Wang, Z. (2019). Basing diversified services of complex IIoT applications on scalable block graph platform. IEEE Access, 7, 22966–22975.

    Article  Google Scholar 

  21. Mohajer, A., Mazoochi, M., Niasar, F. A., Ghadikolayi, A. A., & Nabipour, M. (2013). Network coding-based QoS and security for dynamic interference-limited networks. In Computer networks: 20th international conference, CN 2013, Lwówek Śląski, Poland, June 17-21, 2013. Proceedings 20 (pp. 277–289). Springer, Berlin

  22. Liao, Z., Cheng, S., Zhang, J., Wu, W., Wang, J., & Sharma, P. K. (2022). GpDB: A graph-partition based storage strategy for DAG-blockchain in edge-cloud IIoT. IEEE Transactions on Industrial Informatics.

  23. Li, N., Xiao, M., Rasmussen, L. K., Hu, X., & Leung, V. C. (2020). On resource allocation of cooperative multiple access strategy in energy-efficient industrial internet of things. IEEE Transactions on Industrial Informatics, 17(2), 1069–1078.

    Article  Google Scholar 

  24. Liu, X., Jia, M., Zhou, M., Wang, B., & Durrani, T. S. (2021). Integrated cooperative spectrum sensing and access control for cognitive industrial Internet of Things. IEEE Internet of Things Journal, 10(3), 1887–1896.

    Article  Google Scholar 

  25. Bebortta, S., Senapati, D., Panigrahi, C. R., & Pati, B. (2021). Adaptive performance modeling framework for QoS-aware offloading in MEC-based IIoT systems. IEEE Internet of Things Journal, 9(12), 10162–10171.

    Article  Google Scholar 

  26. Wu, G., Zhiqi, Xu., Zhang, H., Shen, S., & Shui, Yu. (2023). Multi-agent DRL for joint completion delay and energy consumption with queuing theory in MEC-based IIoT. Journal of Parallel and Distributed Computing, 176, 80–94.

    Article  Google Scholar 

  27. Liang, F., Wei, Yu., Liu, X., Griffith, D., & Golmie, N. (2020). Toward computing resource reservation scheduling in Industrial Internet of Things. IEEE Internet of Things Journal, 8(10), 8210–8222.

    Article  Google Scholar 

  28. Guo, M., Mukherjee, M., Guan, Q., Jiangtao, Ou., & Fan, C. (2022). Delay-based packet-granular QoS provisioning for mixed traffic in industrial internet of things. IEEE Transactions on Green Communications and Networking, 6(4), 2128–2143.

    Article  Google Scholar 

  29. Bavaghar, M., Mohajer, A., & Taghavi Motlagh, S. (2020). Energy efficient clustering algorithm for wireless sensor networks. Journal of Information Systems and Telecommunication (JIST), 4(28), 238.

    Google Scholar 

  30. Ghosh, A., Mukherjee, A., & Misra, S. (2021). Sega: Secured edge gateway microservices architecture for IIOT-based machine monitoring. IEEE Transactions on Industrial Informatics, 18(3), 1949–1956.

    Article  Google Scholar 

  31. Wei, K., Li, J., Ma, C., Ding, M., Chen, C., Jin, S., & Poor, H. V. (2021). Low-latency federated learning over wireless channels with differential privacy. IEEE Journal on Selected Areas in Communications, 40(1), 290–307.

    Article  Google Scholar 

  32. Wang, L., & Zhang, H. (2019). Analysis of joint scheduling and power control for predictable URLLC in industrial wireless networks. In 2019 IEEE international conference on industrial internet (ICII) (pp. 160-169). IEEE.

  33. Tajalli, S. Z., Mardaneh, M., Taherian-Fard, E., Izadian, A., Kavousi-Fard, A., Dabbaghjamanesh, M., & Niknam, T. (2020). DoS-resilient distributed optimal scheduling in a fog supporting IIoT-based smart microgrid. IEEE Transactions on Industry Applications, 56(3), 2968–2977.

    Article  Google Scholar 

  34. Mohajer, A., Barari, M., & Zarrabi, H. (2016). Big data-based self optimization networking in multi carrier mobile networks. Bulletin de la Société Royale des Sciences de Liège, 85, 392–408.

    Article  Google Scholar 

  35. Liu, W., Popovski, P., Li, Y., & Vucetic, B. (2019). Wireless networked control systems with coding-free data transmission for industrial IoT. IEEE Internet of Things Journal, 7(3), 1788–1801.

    Article  Google Scholar 

  36. Mohajer, A., Yousefvand, M., Ghalenoo, E. N., Mirzaei, P., & Zamani, A. (2014). Novel approach to sub-graph selection over coded wireless networks with QoS constraints. IETE Journal of Research, 60(3), 203–210.

    Article  Google Scholar 

  37. Nivaashini, M., & Thangaraj, P. (2021). Computational intelligence techniques for automatic detection of Wi-Fi attacks in wireless IoT networks. Wireless Networks, 27(4), 2761–2784.

    Article  Google Scholar 

  38. Zhou, H., She, C., Deng, Y., Dohler, M., & Nallanathan, A. (2021). Machine learning for massive industrial internet of things. IEEE Wireless Communications, 28(4), 81–87.

    Article  Google Scholar 

  39. Fang, K., Wang, T., Yuan, X., Miao, C., Pan, Y., & Li, J. (2022). Detection of weak electromagnetic interference attacks based on fingerprint in IIoT systems. Future Generation Computer Systems, 126, 295–304.

    Article  Google Scholar 

  40. Mohajer, A., Bavaghar, M., & Farrokhi, H. (2020). Reliability and mobility load balancing in next generation self-organized networks: Using stochastic learning automata. Wireless Personal Communications, 114(3), 2389–2415.

    Article  Google Scholar 

  41. Liu, X., Sun, C., Wei, Yu., & Zhou, Mu. (2021). Reinforcement-learning-based dynamic spectrum access for software-defined cognitive industrial internet of things. IEEE Transactions on Industrial Informatics, 18(6), 4244–4253.

    Article  Google Scholar 

  42. Fu, R., Chen, J., Lin, Y., Zou, A., Chen, C., Guan, X., Ma, Y. (2023). Smart sensing and communication co-design for IIoT-based control systems. IEEE Internet of Things Journal

  43. Zhang, P., Zhang, Yi., Kumar, N., & Hsu, C.-H. (2022). Deep reinforcement learning algorithm for latency-oriented IIOT resource orchestration. IEEE Internet of Things Journal, 10(8), 7153–7163.

    Article  Google Scholar 

  44. Raza, A., Shah, M. A., Khattak, H. A., Maple, C., Al-Turjman, F., & Rauf, H. T. (2022). Collaborative multi-agents in dynamic industrial internet of things using deep reinforcement learning. Environment, Development and Sustainability, 24(7), 9481–9499.

    Article  Google Scholar 

  45. Hu, S., & Chen, W. (2021). Joint lossy compression and power allocation in low latency wireless communications for IIoT: A cross-layer approach. IEEE Transactions on Communications, 69(8), 5106–5120.

    Article  Google Scholar 

  46. Mohajer, A., Sorouri, F., Mirzaei, A., Ziaeddini, A., Jalali Rad, K., and Bavaghar, M., (2022). Energy-aware hierarchical resource management and backhaul traffic optimization in heterogeneous cellular networks. IEEE Systems Journal, 16(4), 5188–5199.

    Article  Google Scholar 

  47. Salih, Q. M., Rahman, M. A., Asyhari, A. T., Naeem, M. K., Patwary, M., Alturki, R., & Ikram, M. A. (2023). Dynamic channel estimation-aware routing protocol in mobile cognitive radio networks for smart IIoT applications. Digital Communications and Networks, 9(2), 367–382.

    Article  Google Scholar 

  48. Wu, H., Lyu, X., & Tian, H. (2019). Online optimization of wireless powered mobile-edge computing for heterogeneous industrial internet of things. IEEE Internet of Things Journal, 6(6), 9880–9892.

    Article  Google Scholar 

  49. Somarin, A. M., Alaei, Y., Tahernezhad, M. R., Mohajer, A., & Barari, M. (2015). An efficient routing protocol for discovering the optimum path in mobile ad hoc networks. Indian Journal of Science and Technology, 8(S8), 450–455.

    Article  Google Scholar 

  50. Nawaz, S. J., Sharma, S. K., Mansoor, B., Patwary, M. N., & Khan, N. M. (2021). Non-coherent and backscatter communications: Enabling ultra-massive connectivity in 6G wireless networks. IEEE Access, 9, 38144–38186.

    Article  Google Scholar 

  51. Mohajer, A., Somarin, A., Yaghoobzadeh, M., & Gudakahriz, S. (2016). A method based on data mining for detection of intrusion in distributed databases. Journal of Engineering and Applied Sciences, 11(7), 1493–1501.

    Google Scholar 

  52. Mahbub, M. (2020). Comparative link-level analysis and performance estimation of channel models for IIoT (industrial-IoT) wireless communications. Internet of things, 12, 100315.

    Article  Google Scholar 

  53. Rahim, M., Kaddoum, G., & Do, T. N. (2023). Joint devices and IRSs association for terahertz communications in Industrial IoT networks. IEEE Transactions on Green Communications and Networking.

  54. Jiang, T., Zhang, J., Tang, P., Tian, L., Zheng, Yi., Dou, J., Asplund, H., Raschkowski, L., D’Errico, R., & Jämsä, T. (2021). 3GPP standardized 5G channel model for IIoT scenarios: A survey. IEEE Internet of Things Journal, 8(11), 8799–8815.

    Article  Google Scholar 

  55. Gu, W., Liu, Y., Wang, C. X., Xu, W., Yu, Y., Lu, W. J., & Zhu, H. B. (2023). A general 3D geometry-based stochastic channel model for B5G mmWave IIoT. IEEE Internet of Things Journal.

  56. Xu, L., Yin, W., Zhang, X., & Yang, Y. (2020). Fairness-aware throughput maximization over cognitive heterogeneous NOMA networks for industrial cognitive IoT. IEEE Transactions on Communications, 68(8), 4723–4733.

    Article  Google Scholar 

  57. Aboagye, S. B. (2018). Energy efficiency optimization in millimeter wave backhaul heterogeneous networks. PhD Diss., Memorial University of Newfoundland

  58. Xu, B., Chen, Y., Carrión, J. R., & Zhang, T. (2017). Resource allocation in energy-cooperation enabled two-tier NOMA HetNets toward green 5G. IEEE Journal on Selected Areas in Communications, 35(12), 2758–2770.

    Article  Google Scholar 

  59. Di, B., Song, L., & Li, Y. (2016). Sub-channel assignment, power allocation, and user scheduling for non-orthogonal multiple access networks. IEEE Transactions on Wireless Communications, 15(11), 7686–7698.

    Article  Google Scholar 

  60. Chege, S., & Walingo, T. (2021). Energy efficient resource allocation for uplink hybrid power domain sparse code nonorthogonal multiple access heterogeneous networks with statistical channel estimation. Transactions on Emerging Telecommunications Technologies, 32(1), e4185.

    Article  Google Scholar 

  61. Kaur, A., & Kumar, K. (2020). Energy-efficient resource allocation in cognitive radio networks under cooperative multi-agent model-free reinforcement learning schemes. IEEE Transactions on Network and Service Management, 17(3), 1337–1348.

    Article  Google Scholar 

  62. Naderializadeh, N., Sydir, J. J., Simsek, M., & Nikopour, H. (2021). Resource management in wireless networks via multi-agent deep reinforcement learning. IEEE Transactions on Wireless Communications, 20(6), 3507–3523.

    Article  Google Scholar 

  63. Huang, X., Leng, S., Maharjan, S., & Zhang, Y. (2021). Multi-agent deep reinforcement learning for computation offloading and interference coordination in small cell networks. IEEE Transactions on Vehicular Technology, 70(9), 9282–9293.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiabao Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Sun, J. & Mohajer, A. Queue stability and dynamic throughput maximization in multi-agent heterogeneous wireless networks. Wireless Netw (2024). https://doi.org/10.1007/s11276-024-03730-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11276-024-03730-4

Keywords

Navigation