Skip to main content
Log in

Recent Lightweight cryptography (LWC) based security advances for resource-constrained IoT networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In today's world, the Internet of Things (IoT) plays a major role to interconnect all the devices and improve the overall Quality of Life (QoL) for people. The main concern among IoT systems revolve around three pillars namely security, confidentiality, and privacy owing to the sensitive nature of the data being transmitted and processed byIoT devices. Traditional cryptographic approaches address these concerns by ensuring the authenticity and confidentiality of IoT systems. However, the majority of IoT devices are resource-constrained, which implies that they operate under significant resource constraints such as limited computational power, constrained battery life, physical compactness, and restricted memory capacity. To this end, Lightweight cryptography (LWC) offers methods specifically designed to accommodate the limitations of resource-constrained IoT devices. This work establishes the role of light weight cryptography for such resource constrained IoT networks in terms of security perspectives. In this work, we explore the security vulnerabilities of IoT systems and the associated lightweight cryptographic methods highlighting four components namely lightweight block ciphers, lightweight stream ciphers, hash functions, and Elliptic Curve Cryptography. The work further discusses the role of LWC and reviews the recent advancements in different sectors of IoT such as smart city, industries, healthcare, smart grids, and agriculture. Finally, several open research directions are highlighted in order to guide future LWC and IoT researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fei, H. (2016). Security and privacy in internet of things (IoTs): Models, algorithms, and implementations. CRC Press. ISBN 9781498723183.

    Google Scholar 

  2. Fan, K., Luo, Q., Zhang, K., & Yang, Y. (2020). Cloud-based lightweight secure RFID mutual authentication protocol in IoT. Information Sciences, 527, 329–340. https://doi.org/10.1016/j.ins.2019.08.006

    Article  MathSciNet  Google Scholar 

  3. Chi, T., & Chen, M. (2017). A frequency hopping method for spatial RFID/WiFi/Bluetooth scheduling in agricultural IoT. Wireless Networks, 25(2), 805–817. https://doi.org/10.1007/s11276-017-1593-z

    Article  Google Scholar 

  4. Thabit, F., Can, O., Aljahdali, A. O., Al-Gaphari, G. H., & Alkhzaimi, H. A. (2023). Cryptography algorithms for enhancing IoT security. Internet of Things, 22, 100759. https://doi.org/10.1016/j.iot.2023.100759. ISSN 2542-6605.

    Article  Google Scholar 

  5. Chellappan, V., & Sivalingam, K. M. (2016). Chapter 10—Security and privacy in the Internet of Things. In R. Buyya & A. V. Dastjerdi (Eds.), Internet of things (pp. 183–200). Morgan Kaufmann. ISBN 9780128053959. https://doi.org/10.1016/B978-0-12-805395-9.00010-1

  6. Hameed, A., & Alomary, A. (2019). Security issues in IoT: A survey. In 2019 International conference on innovation and intelligence for informatics, computing, and technologies (3ICT). IEEE. https://doi.org/10.1109/3ICT.2019.8910320

  7. Noor, M. B. M., & Hassan, W. H. (2019). Current research on Internet of Things (IoT) security: A survey. Computer Networks, 148, 283–294. https://doi.org/10.1016/j.comnet.2018.11.025,Elsevier

    Article  Google Scholar 

  8. Chew, K. M., Tan, S. C. W., Loh, G. C. W., Bundan, N., & Yiiong, S. P. (2020). IoT soil moisture monitoring and irrigation system development. In ICSCA 2020: Proceedings of the 2020 9th international conference on software and computer applications (pp. 247–252). ACM Digital Library.

  9. Zeadallya, S., Das, A. K., & Sklavos, N. (2019). Cryptographic technologies and protocol standards for Internet of Things. Internet Things. https://doi.org/10.1016/j.iot.2019.100075,Elsevier

    Article  Google Scholar 

  10. Philip, M. A., & Vaithiyanathan. (2017). A survey on lightweight ciphers for IoT devices. In Presented at the international conference on technological advancements in power and energy (TAP energy).

  11. Ahmed, S. F., Islam, M. R., Nath, T. D., Ferdosi, B. J., & Hasan, A. T. (2020). G-TBSA: A generalized lightweight security algorithm for IoT. In 2019 4th international conference on electrical information and communication technology (EICT). IEEE. https://doi.org/10.1109/EICT48899.2019.9068848

  12. Lepekhin, A., Borremans, A., Ilin, I., & Jantunen, S. (2019). A systematic mapping study on internet of things challenges. In IEEE/ACM 1st international workshop on software engineering research and practices for the internet of things (SERP4IoT). IEEE Digital Library. https://doi.org/10.1109/SERP4IoT.2019.00009

  13. Yugha, R., & Chithra, S. (2020). A survey on technologies and security protocols: Reference for future generation IoT. Journal of Network and Computer Applications. https://doi.org/10.1016/j.jnca.2020.102763

    Article  Google Scholar 

  14. Rao, V., & Prema, K.V. (2019). Comparative study of lightweight hashing functions for resource constrained devices of IoT. In 4th international conference on computational systems and information technology for sustainable solution (CSITSS). IEEE. https://doi.org/10.1109/CSITSS47250.2019.9031038

  15. Jiang, X., Lora, M., & Chattopadhyay, S. (2020). An experimental analysis of securityvulnerabilities in industrial IoT devices. ACM Transactions on Internet Technology. https://doi.org/10.1145/3379542,ACMDigitalLibrary

    Article  Google Scholar 

  16. Alabaa, F. A., Othmana, M., Hashema, I. A. T., & Alotaibi, F. (2017). Internet of Thingssecurity: A survey. Journal of Network and Computer Applications, 88, 10–28. https://doi.org/10.1016/j.jnca.2017.04.002,Elsevier

    Article  Google Scholar 

  17. Jawhar, S., Miller, J., & Bitar, Z. (2024). AI-based cybersecurity policies and procedures. In 2024 IEEE 3rd international conference on AI in cybersecurity (ICAIC), Houston (pp. 1–5). https://doi.org/10.1109/ICAIC60265.2024.10433845

  18. Rajhi, M. (2021). Security procedures for user-centric ultra-dense 5G networks. In 2021 IEEE international IOT, electronics and mechatronics conference (IEMTRONICS), Toronto (pp. 1–5). https://doi.org/10.1109/IEMTRONICS52119.2021.9422599

  19. Tsantikidou, K., & Sklavos, N. (2022). Hardware limitations of lightweight cryptographic designs for IoT in healthcare. Cryptography, 6(3), 45. https://doi.org/10.3390/cryptography6030045

    Article  Google Scholar 

  20. Fotovvat, A., Rahman, G. M. E., Vedaei, S. S., & Wahid, K. A. (2021). Comparative performance analysis of lightweight cryptography algorithms for IoT sensor nodes. IEEE Internet of Things Journal, 8(10), 8279–8290. https://doi.org/10.1109/JIOT.2020.3044526

    Article  Google Scholar 

  21. Singh, S., Sharma, P. K., Moon, S. Y., et al. (2017). Advanced lightweight encryption algorithms for IoT devices: Survey, challenges and solutions. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-017-0494-4

    Article  Google Scholar 

  22. Cheng, J., Guo, S., & He, J. (2022). An extended type-1 generalized feistel networks: Lightweight block cipher for IoT. IEEE Internet of Things Journal, 9(13), 11408–11421. https://doi.org/10.1109/JIOT.2021.3126317

    Article  Google Scholar 

  23. Bokhari, M. U., & Afzal, S. (2023). Performance of software and hardware oriented lightweight stream cipher in constraint environment: A review. In 2023 10th international conference on computing for sustainable global development (INDIACom), New Delhi (pp. 1667–1672).

  24. Khan, S., Lee, W.-K., Karmakar, A., Mera, J. M. B., Majeed, A., & Hwang, S. O. (2023). Area–time efficient implementation of nist lightweight hash functions targeting IoT applications. IEEE Internet of Things Journal, 10(9), 8083–8095. https://doi.org/10.1109/JIOT.2022.3229516

    Article  Google Scholar 

  25. Yeh, L.-Y., Chen, P.-J., Pai, C.-C., & Liu, T.-T. (2020). an energy-efficient dual-field elliptic curve cryptography processor for internet of things applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(9), 1614–1618. https://doi.org/10.1109/TCSII.2020.3012448

    Article  Google Scholar 

  26. Ahmed, S. F., et al. (2024). Toward a secure 5G-enabled internet of things: A survey on requirements, privacy, security, challenges, and opportunities. IEEE Access, 12, 13125–13145. https://doi.org/10.1109/ACCESS.2024.3352508

    Article  Google Scholar 

  27. Tong, F., Chen, C., & Pan, J. (2024). A novel detection and localization scheme for wormhole attack in internet of things. IEEE Internet of Things Journal, 11(4), 7141–7152. https://doi.org/10.1109/JIOT.2023.3315757

    Article  Google Scholar 

  28. Kramp, T., van Kranenburg, R., & Lange, S. (2013). Introduction to the internet of things. In Enabling things to talk. Springer. https://doi.org/10.1007/978-3-642-40403-0_1

  29. Teicher, J. (2023). The little-known story of the first IOT device. IBM Blog. Retrieved June 12, 2023, from https://www.ibm.com/blog/little-known-story-first-iot-device/

  30. Kumar, S., Tiwari, P., & Zymbler, M. (2019). Internet of Things is a revolutionary approach for future technology enhancement: A review. J Big Data, 6, 111. https://doi.org/10.1186/s40537-019-0268-2

    Article  Google Scholar 

  31. Yang, Y., Wu, L., Yin, G., Li, L., & Zhao, H. (2017). A survey on security and privacy issues in internet-of-things. IEEE Internet of Things Journal, 4(5), 1250–1258. https://doi.org/10.1109/JIOT.2017.2694844,IEEE

    Article  Google Scholar 

  32. Syed, A. S., Sierra-Sosa, D., Kumar, A., & Elmaghraby, A. (2021). IoT in smart cities: a survey of technologies, practices and challenges. Smart Cities, 4(2), 429–475. https://doi.org/10.3390/smartcities4020024

    Article  Google Scholar 

  33. Yadav, A., & Prasad, L. B. (2019) IOT devices for control applications: A review. In 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India (pp. 473–479). https://doi.org/10.1109/ICECA.2019.8821895

  34. Varadharajan, V., Tupakula, U., & Karmakar, K. (2018). Study of security attacks against IoT infrastructures. Technical Report TR1: ISIF ASIA FundedProject.

  35. Fetahu, L., Maraj, A., & Havolli, A. (2022). Internet of things (IoT) benefits, future perspective, and implementation challenges. In 2022 45th Jubilee international convention on information, communication and electronic technology (MIPRO), Opatija, Croatia (pp. 399–404). https://doi.org/10.23919/MIPRO55190.2022.9803487

  36. Cruz-Piris, L., Rivera, D., Marsa-Maestre, I., & Velasco, J. (2018). Access control mechanism for IoT environments based on modelling communication procedures as resources. Sensors, 18(3), 917. https://doi.org/10.3390/s18030917

    Article  Google Scholar 

  37. Buil-Gil, D., Kemp, S., Kuenzel, S., Coventry, L., Zakhary, S., Tilley, D., & Nicholson, J. (2023). The digital harms of smart home devices: A systematic literature review. Computers in Human Behavior, 145, 107770. https://doi.org/10.1016/j.chb.2023.107770. ISSN 0747-5632.

    Article  Google Scholar 

  38. Abdalla, P. A., & Varol, A. (2019). Advantages to disadvantages of cloud computing for small-sized business. In 2019 7th international symposium on digital forensics and security (ISDFS), Barcelos (pp. 1–6). https://doi.org/10.1109/ISDFS.2019.8757549

  39. Ghosh, R. K. (2017). Low power communication protocols: ZigBee, 6LoWPAN and ZigBee IP. In Wireless networking and mobile data management. Springer. https://doi.org/10.1007/978-981-10-3941-6_6

  40. Sharma, R., Pandey, N., & Khatri, S. K. (2017). Analysis of IoT security at network layer. In 2017 6th international conference on reliability, infocom technologies and optimization (trends and future directions) (ICRITO), Noida (pp. 585–590). https://doi.org/10.1109/ICRITO.2017.8342495

  41. Ansar, S. A., Arya, S., Aggrawal, S., Saxena, S., Kushwaha, A., & Pathak, P. C. (2023). Security in IoT layers: Emerging challenges with countermeasures. In P. K. Shukla, K. P. Singh, A. K. Tripathi, & A. Engelbrecht (Eds.), Computer vision and robotics. Algorithms for intelligent systems. Springer. https://doi.org/10.1007/978-981-19-7892-0_44

    Chapter  Google Scholar 

  42. Atlam, H., Walters, R., & Wills, G. (2018). Fog computing and the internet of things: A review. Big Data and Cognitive Computing, 2(2), 10. https://doi.org/10.3390/bdcc2020010

    Article  Google Scholar 

  43. Lombardi, M., Pascale, F., & Santaniello, D. (2021). Internet of things: A general overview between architectures, protocols and applications. Information, 12(2), 87. https://doi.org/10.3390/info12020087

    Article  Google Scholar 

  44. Hamdan, S., Ayyash, M., & Almajali, S. (2020). Edge-computing architectures for internet of things applications: A survey. Sensors, 20(22), 6441. https://doi.org/10.3390/s20226441

    Article  Google Scholar 

  45. Adat, V., & Gupta, B. B. (2018). Security in internet of things: Issues, challenges, taxonomy, and architecture. Telecommunication Systems, 67(3), 423–441. https://doi.org/10.1007/s11235-017-0345-9

    Article  Google Scholar 

  46. Yang, Y., Wu, L., Yin, G., Li, L., & Zhao, H. (2017). A survey on security andprivacy issues in internet-of-things. IEEE Internet of Things Journal, 4(5), 1250–1258. https://doi.org/10.1109/JIOT.2017.2694844,IEEE

    Article  Google Scholar 

  47. Prakash, V., Singh, A. V., & Khatri, S. K. (2019). A new model of light weight hybrid cryptography for internet of things. In 2019 3rd international conference on electronics, communication and aerospace technology (ICECA). IEEE. https://doi.org/10.1109/ICECA.2019.8821924

  48. Manifavas, C., Hatzivasilis, G., Fysarakis, K., & Papaefstathiou, Y. (2015). A survey of lightweight stream ciphers for embedded systems. Security Communications and Network, 9, 1226–1246. https://doi.org/10.1002/sec.1399

    Article  Google Scholar 

  49. Joachim, W. W. (2022). Internet-of-things architecture IoT a project deliverable D1.2-initial architectural reference model for IoT. Retrieved July 26, 2022, from https://cocoa.ethz.ch/downloads/2014/01/1360_D1%202_Initial_architectural_reference_model_for_IoT.pdf

  50. Bauer, M. et al. (2013). IoT reference model. In Enabling things to talk. Springer. https://doi.org/10.1007/978-3-642-40403-0_7

  51. Alghofaili, Y., & Rassam, M. A. (2022). A trust management model for IoT devices and services based on the multi-criteria decision-making approach and deep long short-term memory technique. Sensors (Basel), 22(2), 634. https://doi.org/10.3390/s22020634.PMID:35062594;PMCID:PMC8777818

    Article  Google Scholar 

  52. Haller, S., Serbanati, A., Bauer, M., & Carrez, F. (2013). A domain model for the internet of things. In Proc. IEEE int. conf. green comput. commun. IEEE internet things IEEE cyber, phys. social comput., Beijing (pp. 411–417). https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.87

  53. Mao, Y.-Q., & Shen, S.-B. (2014). Information model and capability analysis of the internet of things. Ruan Jian Xue Bao/Journal of Software, 25, 1685–1695. https://doi.org/10.13328/j.cnki.jos.004664

    Article  Google Scholar 

  54. Soubra, H., &Abran, A. (2017). Functional size measurement for the internet of things (IoT): An example using COSMIC and the Arduino open-source platform. https://doi.org/10.1145/3143434.3143452

  55. Kulkarni, S., & Kulkarni, S. (2017). Communication models in internet of things: A survey. IJSTE—International Journal of Science Technology & Engineering, 3(11), 87–91.

    Google Scholar 

  56. (2014). The internet of things reference model [Online]. http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf

  57. Moganedi, S., &Mtsweni, J. (2017). Beyond the convenience of the internet of things: Security and privacy concerns. https://doi.org/10.23919/ISTAFRICA.2017.8102372

  58. Gupta, K. (2022). Machine learning-based device type classification for IoT device re- and continuous authentication. https://digitalcommons.unl.edu/computerscidiss/221/ (Accessed 03 Mar 2023)

  59. Jain, V. K., Mazumdar, A. P., Faruki, P., & Govil, M. C. (2022). Congestion control in Internet of Things: Classification, challenges, and future directions. Sustainable Computing: Informatics and Systems, 35, 100678. https://doi.org/10.1016/j.suscom.2022.100678. ISSN 2210-5379.

    Article  Google Scholar 

  60. Ammar, M., Daniels, W., Crispo, B., & Hughes, D. (2018). SPEED: Secure provable erasure for class-1 IoT devices, 111–118. https://doi.org/10.1145/3176258.3176337

  61. King, J., & Awad, A. I. (2016). A distributed security mechanism for resource-constrained IoT devices. Informatica, 40, 133–143.

    Google Scholar 

  62. Anuradha, M. P. & Rani, K. L. F. C. (2022). Chapter Fourteen—Blockchain technology for IoT edge devices and data security. In P. Raj, K. Saini, & C. Surianarayanan (Eds.), Advances in computers (Vol. 127, pp 379–412). Elsevier. ISSN 0065-2458, ISBN 9780128245064. https://doi.org/10.1016/bs.adcom.2022.02.011

  63. Kurose, J., & Ross, K. (2006). Chapter 8—Layer 7: The application layer. In: M. Gregg (Ed.), Hack the stack, syngress (pp. 285–352). ISBN 9781597491099. https://doi.org/10.1016/B978-159749109-9/50012-5

  64. Jat, S., & Patel, P. (2017). Wireless sensor networks protocol: A review. International Journal of Engineering Development and Research (IJEDR), 5(1), 23–26. ISSN:2321-9939. :http://www.ijedr.org/papers/IJEDR1701005.pdf

  65. Sharma, C., Jain, S. C., & Sharma, A. K. (2016). Explorative study of SQL injection attacks and mechanisms to secure web application database—A review. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/IJACSA.2016.070312

  66. Fotiou, N., Marias, G. F., & Polyzos, G. C. (2012). Fighting phishing the information-centric way. In 2012 5th international conference on new technologies, mobility and security (NTMS), Istanbul, Turkey (pp. 1–5). https://doi.org/10.1109/NTMS.2012.6208747

  67. Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S., Khayami, R., Choo, K. K. R., & Newton, D. E. (2019). DRTHIS: Deep ransomware threat hunting and intelligence system at the fog layer. Future Generation Computer Systems, 90, 94–104. https://doi.org/10.1016/j.future.2018.07.045. ISSN 0167-739X.

    Article  Google Scholar 

  68. Bhattasali, T., Chaki, R., & Sanyal, S. (2023). Sleep deprivation attack detection in wireless sensor network. Retrieved June 11, 2023, from https://doi.org/10.48550/arXiv.1203.0231

  69. Obaid, H. S., & Abeed, E. H. (2020). DoS and DDoS attacks at OSI layers. 1–9. 10.5281/zenodo.3610833

  70. Chordiya, A. R., Majumder, S., & Javaid, A. Y. (2018). Man-in-the-middle (MITM) attack based hijacking of HTTP traffic using open-source tools. In 2018 IEEE international conference on electro/information technology (EIT), Rochester (pp. 0438–0443). https://doi.org/10.1109/EIT.2018.8500144

  71. Ghugar, U., Pradhan, J., Bhoi, S., & Sahoo, R. (2019). LB-IDS: Securing wireless sensor network using protocol layer trust-based intrusion detection system. Journal of Computer Networks and Communications, 2019, 1–13. https://doi.org/10.1155/2019/2054298

    Article  Google Scholar 

  72. Chen, C., Asoni, D. E., Perrig, A., Barrera, D., Danezis, G., Troncoso, C. (2018). TARANET: Traffic-analysis resistant anonymity at the network layer. In 2018 IEEE European symposium on security and privacy (EuroS&P), London (pp. 137–152). https://doi.org/10.1109/EuroSP.2018.00018

  73. Khattak, H. A., Shah, M. A., Khan, S., Ali, I., & Imran, M. (2019). Perception layer security in internet of things. Future Generation Computer Systems, 100, 144–164. https://doi.org/10.1016/j.future.2019.04.038. ISSN 0167-739X.

    Article  Google Scholar 

  74. Nguyen, V.-L., Lin, P.-C., & Hwang, R.-H. (2019). Energy depletion attacks in low power wireless networks. IEEE Access, 7, 51915–51932. https://doi.org/10.1109/ACCESS.2019.2911424

    Article  Google Scholar 

  75. Affia, A. O., Finch, H., Jung, W., Samori, I. A., Potter, L., & Palmer, X.-L. (2023). IoT health devices: Exploring security risks in the connected landscape. IoT, 4(2), 150–182. https://doi.org/10.3390/iot4020009

    Article  Google Scholar 

  76. Rekha, S., Thirupathi, L., Renikunta, S., & Gangula, R. (2023). Study of security issues and solutions in Internet of Things (IoT). Materials Today: Proceedings, 80(3), 3554–3559. https://doi.org/10.1016/j.matpr.2021.07.295. ISSN 2214-7853.

    Article  Google Scholar 

  77. Aldowah, H., Rehman, S., & Umar, I. (2019). Security in internet of things: Issues. Challenges, and Solutions. https://doi.org/10.1007/978-3-319-99007-1_38

    Article  Google Scholar 

  78. Kolias, C., Stavrou, A., & Voas, J. (2015). Securely making “things” right. Computer, 48(9), 84–88. https://doi.org/10.1109/MC.2015.258

    Article  Google Scholar 

  79. McKay, K., Bassham, L., Turan, M. S., & Mouha, N. (2017). Report on lightweight cryptography (Nistir8114). Gaithersburg: NIST.

    Google Scholar 

  80. Information technology, Security techniques, Lightweight cryptography, Part 2; Block ciphers (ISO/IEC 29192-2). Retrieved February 21, 2014, from https://www.iso.org/standard/56552.html

  81. Thakor, V. A., Razzaque, M. A., & Khandaker, M. R. A. (2021). Lightweight cryptography algorithms for resource-constrained IoT devices: A review, comparison and research opportunities. IEEE Access, 9, 28177–28193. https://doi.org/10.1109/ACCESS.2021.3052867

    Article  Google Scholar 

  82. Singh, S., Sharma, P. K., Moon, S. Y., & Park, J. H. (2017). Advanced lightweight encryption algorithms for IoT devices: Survey, challenges and solutions. Journal of Ambient Intelligece & Human Computing. https://doi.org/10.1007/s12652-017-0494-4

    Article  Google Scholar 

  83. Lara-Nino, C. A., Diaz-Perez, A., & Morales-Sandoval, M. (2020). Lightweight elliptic curve cryptography accelerator for internet of things applications. Ad Hoc Networks, 103, 102159. https://doi.org/10.1016/j.adhoc.2020.102159. ISSN 1570-8705.

    Article  Google Scholar 

  84. Hatzivallis, G., Fysarakis, K., Papaefstathiou, I., & Manifavas, C. (2018). A review of lightweight block ciphers. Journal of Cryptographic Engineering, 8, 141–184.

    Article  Google Scholar 

  85. Ammar, M., Russello, G., & Crispo, B. (2018). Internet of Things: A survey on the security of IoT frameworks. Journal of Information Security and Applications, 38, 8–27.

    Article  Google Scholar 

  86. Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2019). A survey on IoT security: Application areas, security threats, and solution architectures. IEEE Access, 7, 82721–82743. https://doi.org/10.1109/ACCESS.2019.2924045

    Article  Google Scholar 

  87. Hammi, B., Fayad, A., Khatoun, R., Zeadally, S., & Begriche, Y. (2020). A lightweight ECC-based authentication scheme for internet of things (IoT). IEEE Systems Journal, 14(3), 3440–3450. https://doi.org/10.1109/JSYST.2020.2970167

    Article  Google Scholar 

  88. Singh, P., Acharya, B., & Chaurasiya, R. K. (2021). Chapter 8—Lightweight cryptographic algorithms for resource-constrained IoT devices and sensor networks. In S. K. Sharma, B. Bhushan, & N. C. Debnath (Eds.), Advances in ubiquitous sensing applications for healthcare, security and privacy issues in IoT devices and sensor networks (pp. 153–185). Academic Press. https://doi.org/10.1016/B978-0-12-821255-4.00008-0 ISSN 25891014, ISBN 9780128212554.

    Chapter  Google Scholar 

  89. Calmels, B., Canard, S., Girault, M., & Sibert, H. (2006). Low-cost cryptography for privacy in RFID systems. In J. Domingo-Ferrer, J. Posegga, & D. Schreckling (Eds.), Smart card research and advanced applications CARDIS 2006 lecture notes in computer science. (Vol. 3928). Springer. https://doi.org/10.1007/11733447_17

    Chapter  Google Scholar 

  90. Sliman, L., Omrani, T., Tari, Z., Samhat, A. E., & Rhouma, R. (2021). Towards an ultra lightweight block ciphers for Internet of Things. Journal of Information Security and Applications, 61, 102897. https://doi.org/10.1016/j.jisa.2021.102897. ISSN 2214-2126.

    Article  Google Scholar 

  91. Shibuya, Y., Iwai, K., Matsubara, T., & Kurokawa, T. (2022). FPGA implementation of stream cipher SOSEMANUK. In 2022 10th international symposium on computing and networking workshops (CANDARW), Himeji (pp. 83–89). https://doi.org/10.1109/CANDARW57323.2022.00055

  92. Ramya, K. V., Hs, M. R., & Reddy, R. (2023). Implementation and analysis of feistel and SPN structured ciphers—CLEFIA and PRESENT. In 2023 international conference on network, multimedia and information technology (NMITCON), Bengaluru (pp. 1–6). https://doi.org/10.1109/NMITCON58196.2023.10275899

  93. Mohammed, Z. A., & Hussein, K. A. (2023). Lightweight cryptography concepts and algorithms: A survey. In 2023 2nd international conference on advanced computer applications (ACA), Misan (pp. 1–7). https://doi.org/10.1109/ACA57612.2023.10346914

  94. Maitra, S., Sinha, N., Siddhanti, A., Anand, R., & Gangopadhyay, S. (2018). A TMDTO attack against lizard. IEEE Transactions on Computers, 67(5), 733–739. https://doi.org/10.1109/TC.2017.2773062

    Article  MathSciNet  Google Scholar 

  95. Potestad-Ordóñez, F. E., Tena-Sánchez, E., Mora-Gutiérrez, J. M., Valencia-Barrero, M., & Jiménez-Fernández, C. J. (2021). Trivium stream cipher countermeasures against fault injection attacks and DFA. IEEE Access, 9, 168444–168454. https://doi.org/10.1109/ACCESS.2021.3136609

    Article  Google Scholar 

  96. Luo, H., Wu, Y., & Chen, W. (2020). Differential fault attack on TWINE block cipher with nibble. In 2020 IEEE 20th international conference on communication technology (ICCT), Nanning (pp. 1151–1155). https://doi.org/10.1109/ICCT50939.2020.9295786

  97. Degnan, B., Rose, E., Durgin, G., & Maeda, S. (2017). A modified Simon cipher 4-block key schedule as a hash. IEEE Journal of Radio Frequency Identification, 1(1), 85–89. https://doi.org/10.1109/JRFID.2017.2764389

    Article  Google Scholar 

  98. Cheng, L., Xu, P., & Wei, Y. (2016). New related-key impossible differential attack on MIBS-80. In 2016 international conference on intelligent networking and collaborative systems (INCoS), Ostrava (pp. 203–206). https://doi.org/10.1109/INCoS.2016.41

  99. Luo, H., Chen, W., Ming, X., & Wu, Y. (2021). General differential fault attack on PRESENT and GIFT cipher with nibble. IEEE Access, 9, 37697–37706. https://doi.org/10.1109/ACCESS.2021.3062665

    Article  Google Scholar 

  100. Zhang, B., & Gong, X. (2015). Another tradeoff attack on sprout-like stream ciphers. In T. Iwata & J. Cheon (Eds.), Advances in cryptology—ASIACRYPT 2015. ASIACRYPT 2015. Lecture notes in computer science. (Vol. 9453). Springer. https://doi.org/10.1007/978-3-662-48800-3_23

    Chapter  Google Scholar 

  101. Mohd, B. J., Hayajneh, T., & Abu Khalaf, Z. (2015). Optimization and modeling of FPGA implementation of the Katan Cipher. In 2015 6th international conference on information and communication systems (ICICS), Amman (pp. 68–72). https://doi.org/10.1109/IACS.2015.7103204

  102. Li, L., Liu, B., & Wang, H. (2016). QTL: A new ultra-lightweight block cipher. Microprocessors and Microsystems, 45(Part A), 45–55. https://doi.org/10.1016/j.micpro.2016.03.011. ISSN 0141–9331.

    Article  Google Scholar 

  103. Saha, S., Islam, M. R., Rahman, H., Hassan, M., & Hossain, A. A. (2014). Design and implementation of block cipher in hummingbird algorithm over FPGA. In 5th international conference on computing, communications and networking technologies (ICCCNT), Hefei (pp. 1–5). https://doi.org/10.1109/ICCCNT.2014.6963084

  104. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., & Shirai, T. (2011). Piccolo: An ultra-lightweight blockcipher. In B. Preneel & T. Takagi (Eds.), Cryptographic hardware and embedded systems—CHES 2011. CHES 2011. Lecture notes in computer science. (Vol. 6917). Springer. https://doi.org/10.1007/978-3-642-23951-9_23

    Chapter  Google Scholar 

  105. Mohammad Shah, I. N., Ismail, E. S., Samat, F., & Nek Abd Rahman, N. (2023). Modified generalized feistel network block cipher for the internet of things. Symmetry, MDPI, 15(4), 900. https://doi.org/10.3390/sym15040900

    Article  Google Scholar 

  106. Cazorla, M., Marquet, K., & Minier, M. (2013). Survey and benchmark of lightweight block ciphers for wireless sensor networks. In Proceedings of the SECRYPT. http://eprint.iacr.org/2013/295

  107. Rivest, R. L. (1994). The RC5 encryption algorithm. In Proceeding of international workshop on fast software encryption (pp. 86–96). Springer.

  108. Mishra, Z., & Acharya, B. (2021). High throughput novel architectures of TEA family for high speed IoT and RFID applications. Journal of Information Security and Applications, 61, 102906. https://doi.org/10.1016/j.jisa.2021.102906. ISSN 2214-2126.

    Article  Google Scholar 

  109. National Institute of Standards and Technology (NIST). (2001). Advanced encryption standard (AES). Federal information processing standards publication 197, November 26. http://csrc.nist.gov/publications/fps/fps197/fps-197.pdf

  110. Chen, S., Fan, Y., Sun, L., Fu, Y., Zhou, H., Li, Y., Wang, M., Wang, W., & Guo, C. (2022). SAND: An AND-RX Feistel lightweight block cipher supporting S-box-based security evaluations. Designs, Codes and Cryptography. https://doi.org/10.1007/s10623-021-00970-9

    Article  Google Scholar 

  111. Chen, W., Li, L., Guo, Y., & Huang, Y. (2023). SAND-2: An optimized implementation of lightweight block cipher. Integration, 91, 23–34. https://doi.org/10.1016/j.vlsi.2023.02.013. ISSN 0167-9260.

    Article  Google Scholar 

  112. Guo, Y., Li, L., & Liu, B. (2021). Shadow: A lightweight block cipher for IoT nodes. IEEE Internet of Things Journal, 8(16), 13014–13023. https://doi.org/10.1109/JIOT.2021.3064203

    Article  Google Scholar 

  113. Nallathambi, B., & Palanivel, K. (2020). Fault diagnosis architecture for SKINNY family of block ciphers. Microprocessors and Microsystems, 77, 103202.

    Article  Google Scholar 

  114. Dalmasso, L., Bruguier, F., Benoit, P., & Torres, L. (2019). Evaluation of SPN-based lightweight crypto-ciphers. IEEE Access, 7, 10559–10567.

    Article  Google Scholar 

  115. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., & Iwata, T. (2007). The 128-bit blockcipher CLEFIA (extended abstract). In Fast software encryption (FSE 2007), LNCS, 4593 (pp. 181–195). Springer.

  116. Cheng, X., Zhu, H., Xu, Y., Zhang, Y., Xiao, H., & Zhang, Z. (2021). A reconfigurable and compact hardware architecture of CLEFIA block cipher with multi-configuration. Microelectronics Journal, 114, 105144.

    Article  Google Scholar 

  117. Lata, K., & Saini, S. (2020). Hardware software co-simulation of an AES-128 based data encryption in image processing systems for the internet of things environment. In Proceedings of the 2020 IEEE international symposium on smart electronic systems (iSES) (Formerly iNiS), Chennai, India, 14–16 December 2020 (pp. 260–264).

  118. Gunasekaran, M., Rahul, K., & Yachareni, S. (2021) Virtex 7 FPGA implementation of 256 bit key AES algorithm with key schedule and sub bytes block optimization. In Proceedings of the 2021 IEEE international IOT, electronics and mechatronics conference (IEMTRONICS), Toronto, ON, Canada, 21–24 April 2021 (pp. 1–6).

  119. Acharya, L. C., Purohit, J. P., Bairwa, S. K., & Kumawat, H. C. (2017). FPGA design & implementation of optimized RC5 block cipher. https://doi.org/10.1109/TEL-NET.2017.8343556

  120. Harish, J., Madhuri, S. J., Yaswanth, V., Naidu, K., & Jagannadha. (2016). Low power ASIC implementation of RC5 algorithm. International Journal of Chemical Sciences, 14, 725–732.

    Google Scholar 

  121. Wheeler, D. J., & Needham, R. M. (1994). TEA, a tiny encryption algorithm. In Proceeding of international workshop on fast software encryption (pp. 363–366). Springer.

  122. Hussain, M. A., & Badar, R. (2015). FPGA based implementation scenarios of TEA block cipher. https://doi.org/10.1109/FIT.2015.56

  123. Hasan, M. N., Hasan, M. T., Toma, R. N., & Maniruzzaman, M. (2016). FPGA implementation of LBlock lightweight block cipher. In 2016 3rd international conference on electrical engineering and information communication technology (ICEEICT), Dhaka (pp. 1–4). https://doi.org/10.1109/CEEICT.2016.7873062

  124. Biryukov, A., Shamir, A., & Wagner, D. (2001). Real time cryptanalysis of A5, 1 on a PC, Fast Software Encryption (FSE), LNCS (Vol. 1978, pp. 1–18). Springer.

  125. Hell, M., Johansson, T., & Meier, W. (2005). Grain—A stream cipher for constrained environments. In Workshop on RFID and light-weight crypto: Workshop record, Graz.

  126. Boesgaard, M., Vesterager, M., Pedersen, T., Christiansenm, J., & Scavenius, O. (2003). Rabbit: A new high-performance stream cipher, FSE, LNCS (Vol. 2887, pp. 307–329). Springer.

  127. De Canniére, C., & Preneel, B. (2005). Trivium—A stream cipher construction inspired by block cipher design principles. ECRYPT Stream Cipher. http://www.ecrypt.eu.org/stream/paper/sdir/2006/021.pdf

  128. Hamann, M., Krause, M., & Meier, W. (2017). LIZARD—A lightweight stream cipher for power constrained devices. IACR Transmission Symmetric Cryptology, 1, 45–79. https://doi.org/10.13154/tosc.v2017.i1.45-79

    Article  Google Scholar 

  129. Dubrova, E., & Hell, M. (2017). Espresso: A stream cipher for 5G wireless communication systems. Journal of Cryptography and Communication, 9(2), 273–289.

    Article  MathSciNet  Google Scholar 

  130. Ghafari, V. A., Hu, H., & Xie, C. (2016). Fruit V2: Ultra-lightweight Stream Cipher with Shorter Internal State (Cryptology ePrint Archive Report 2016/355). http://eprint.iacr.org/2016/355

  131. Mikhalev, V., Armknecht, F., & Muller, C. (2017). On ciphers that continuously access the non-volatile key. IACR Transmission Symmetric Cryptology, 2, 52–79. https://doi.org/10.13154/tosc.v2016.i2.52-79

    Article  Google Scholar 

  132. Fan, X., Mandal, K., & Gong, G. (2013). Wg-8: A lightweight stream cipher for resource-constrained smart devices. International conference on heterogeneous networking for quality, reliability, security and robustness (pp. 617–632). Springer.

    Chapter  Google Scholar 

  133. Hell, M., Johansson, T., & Maximov, A. (2006). A stream cipher proposal, Grain-128. In IEEE international symposium on information theory, Seattle (pp. 1614–1618).

  134. Bernstein, D. J. (2005). The Salsa20 stream cipher, slides of talk. In ECRYPT STVL workshop on symmetric key encryption. http://cr.yp.to/talks.html#2005.05.26

  135. Aumasson, J.-P., Henzen, L., Meier, W., & Naya-Plasencia, M. (2010). Quark: A lightweight hash. In International workshop on cryptographic hardware and embedded systems (pp. 1–15). Springer.

  136. Kavun, E. B., & Yalcin, T. (2010). A lightweight implementation of keccak hash function for radiofrequency identification applications. In International workshop on radio frequency identification: security and privacy issues (pp. 258–269). Springer.

  137. Guo, J., Peyrin, T., & Poschmann, A. (2011). The PHOTON family of lightweight hash functions. In CRYPTO 2011, LNCS 6841, international association for cryptologic research (pp. 222–239).

  138. Bogdanov, A., Knězevíc, M., Leander, G., Toz1, D., Varıcı, K, &Verbauwhede, I. (2011). SPONGENT: A lightweight hash function. In CHES 2011, LNCS 6917, international association for cryptologic research (pp. 312–325).

  139. Maetouq, A., & Daud, S. M. (2020). HMNT: Hash function based on new mersenne number transform. IEEE Access, 8, 80395–80407. https://doi.org/10.1109/ACCESS.2020.2989820

    Article  Google Scholar 

  140. Barreto, P. S. L. M., & Rijmen, V. (2011). Whirlpool. In H. C. A. van Tilborg & S. Jajodia (Eds.), Encyclopedia of cryptography and security. Springer. https://doi.org/10.1007/978-1-4419-5906-5_626

    Chapter  Google Scholar 

  141. Handschuh, H. (2011). SHA-0, SHA-1, SHA-2 (secure hash algorithm). In H. C. A. van Tilborg & S. Jajodia (Eds.), Encyclopedia of cryptography and security. Boston: Springer. https://doi.org/10.1007/978-1-4419-5906-5_615

    Chapter  Google Scholar 

  142. Gilbert, H., & Handschuh, H. (2004). Security analysis of SHA-256 and sisters. In M. Matsui & R. J. Zuccherato (Eds.), Selected areas in cryptography. SAC 2003. Lecture notes in computer science. (Vol. 3006). Springer. https://doi.org/10.1007/978-3-540-24654-1_13

    Chapter  Google Scholar 

  143. Sklavos, N. (2012). Towards to SHA-3 hashing standard for secure communications: On the hardware evaluation development. IEEE Latin America Transactions, 10(1), 1433–1434. https://doi.org/10.1109/TLA.2012.6142498

    Article  Google Scholar 

  144. Wang, X., Lai, X., Feng, D., Chen, H., & Yu, X. (2005). Cryptanalysis of the hash functions MD4 and RIPEMD. In R. Cramer (Ed.), Advances in cryptology—EUROCRYPT 2005. EUROCRYPT 2005. Lecture notes in computer science. (Vol. 3494). Springer. https://doi.org/10.1007/11426639_1

    Chapter  Google Scholar 

  145. Dobbertin, H., Bosselaers, A., & Preneel, B. (1996). RIPEMD-160: A strengthened version of RIPEMD. In D. Gollmann (Ed.), Fast software encryption. FSE 1996. Lecture notes in computer science. (Vol. 1039). Springer. https://doi.org/10.1007/3-540-60865-6_44

    Chapter  Google Scholar 

  146. Wong, D. S., Fuentes, H. H., & Chan, A. H. (2001). The performance measurement of cryptographic primitives on palm devices. In 17th annual computer security applications conference, New Orleans (pp. 92–101). https://doi.org/10.1109/ACSAC.2001.991525

  147. Bosselaers, A. (2005). Md4-Md5. In H. C. A. van Tilborg (Ed.), Encyclopedia of cryptography and security. Springer. https://doi.org/10.1007/0-387-23483-7_249

    Chapter  Google Scholar 

  148. Lara-Nino, C. A., Diaz-Perez, A., & Morales-Sandoval, M. (2018). Elliptic curve lightweight cryptography: A survey. IEEE Access, 6, 72514–72550. https://doi.org/10.1109/ACCESS.2018.2881444

    Article  Google Scholar 

  149. Rana, M., Mamun, Q., & Islam, R. (2023). Current lightweight cryptography protocols in Smart City IOT networks: A survey. Retrieved June 9, 2023, from arXiv:2010.00852.

  150. Sankar, R., Subashri, T., & Vaidehi, V. (2011). Implementation and integration of efficient ECDH key exchanging mechanism in software based VoIP network. In 2011 international conference on recent trends in information technology (ICRTIT), Chennai (pp. 124–128). https://doi.org/10.1109/ICRTIT.2011.5972416

  151. Choi, J.-B., Kim, D.-S., Choe, J.-Y., Shin, K.-W. (2020). Hardware implementation of ECIES protocol on security SoC. In 2020 international conference on electronics, information, and communication (ICEIC), Barcelona (pp. 1–4). https://doi.org/10.1109/ICEIC49074.2020.9051263

  152. Bernstein, D. J., & Lange, T. (2014). SafeCurves: Choosing safe curves for elliptic-curve cryptography. Retrieved December 1, 2014, from https://safecurves.cr.yp.to

  153. Jintcharadze, E., & Abashidze, M. (2023). Performance and comparative analysis of elliptic curve cryptography and RSA. In 2023 IEEE east-west design & test symposium (EWDTS), Batumi (pp. 1–4). https://doi.org/10.1109/EWDTS59469.2023.10297088

  154. Manoj Chowdary, G. N., Sri Rama Lakshmi, M. P., Nylu, Y., Deepthi, B., Prasad, K., & Kannaiah, S. K. (2023). Elliptic curve cryptography for network security. In 2023 International conference on inventive computation technologies (ICICT), Lalitpur (pp. 1500–1503). https://doi.org/10.1109/ICICT57646.2023.10134492

  155. Khan, M. R., et al. (2023). Analysis of elliptic curve cryptography & RSA. Journal of ICT Standardization, 11(4), 355–378. https://doi.org/10.13052/jicts2245-800X.1142

    Article  Google Scholar 

  156. Ulla, M. M., Khan, M. S., & Sakkari, D. S. (2023). implementation of elliptic curve cryptosystem with bitcoin curves on SECP256k1, NIST256p, NIST521p, and LLL. Journal of ICT Standardization, 11(4), 329–353. https://doi.org/10.13052/jicts2245-800X.1141

    Article  Google Scholar 

  157. Oladipupo, E. T., et al. (2023). An efficient authenticated elliptic curve cryptography scheme for multicore wireless sensor networks. IEEE Access, 11, 1306–1323. https://doi.org/10.1109/ACCESS.2022.3233632

    Article  Google Scholar 

  158. Kaur, M., et al. (2023). EGCrypto: A low-complexity elliptic galois cryptography model for secure data transmission in IoT. IEEE Access, 11, 90739–90748. https://doi.org/10.1109/ACCESS.2023.3305271

    Article  Google Scholar 

  159. Reddy, K .K., & Subshri, T. (2009). Confidentiality and integrity of VOIP data using efficient ECDH key exchanging mechanism. In National level conference. NIT.

  160. Martínez, V. G., Hernández Encinas, L., & Sánchez Ávila, C. (2010). A survey of the elliptic curve integrated encryption scheme. Journal Of Computer Science And Engineering, 2, 7–13.

    Google Scholar 

  161. Dutta, I. K., Ghosh, B., & Bayoumi, M. (2019). Lightweight cryptography for internet of insecure things: A survey. In 2019 IEEE 9th annual computing and communication workshop and conference (CCWC), Las Vegas (pp. 0475–0481). https://doi.org/10.1109/CCWC.2019.8666557

  162. Rana, M., Mamun, Q., & Islam, R. (2022). Lightweight cryptography in IoT networks: A survey. Future Generation Computer Systems, 129, 77–89. https://doi.org/10.1016/j.future.2021.11.011. ISSN 0167-739X.

    Article  Google Scholar 

  163. Gunathilake, N. A., Buchanan, W. J., & Asif, R. (2019). Next generation lightweight cryptography for smart IoT devices: Implementation, challenges and applications. In 2019 IEEE 5th world forum on internet of things (WF-IoT), Limerick (pp. 707–710). https://doi.org/10.1109/WF-IoT.2019.8767250

  164. Zhou, R., Zhang, X., Wang, X., Yang, G., Guizani, N., & Du, X. (2021). Efficient and traceable patient health data search system for hospital management in smart cities. IEEE Internet of Things Journal, 8(8), 6425–6436. https://doi.org/10.1109/JIOT.2020.3028598

    Article  Google Scholar 

  165. Yu, S., Das, A. K., Park, Y., & Lorenz, P. (2022). SLAP-IoD: Secure and lightweight authentication protocol using physical unclonable functions for internet of drones in smart city environments. IEEE Transactions on Vehicular Technology, 71(10), 10374–10388. https://doi.org/10.1109/TVT.2022.3188769

    Article  Google Scholar 

  166. Pandey, S., & Bhushan, B. (2023). Exploring the viability and effectiveness of lightweight cryptographic techniques in enhancing the Iot data security of smart cities. In 2023 international conference on computational intelligence and sustainable engineering solutions (CISES), Greater Noida (pp. 295–300). https://doi.org/10.1109/CISES58720.2023.10183537

  167. Bajwa, N. T., Anjum, A., & Khan, M. A. (2023). A blockchain-based lightweight secure authentication and trust assessment framework for IoT devices in fog computing. In 2023 IEEE 20th international conference on smart communities: improving quality of life using AI, robotics and IoT (HONET), Boca Raton (pp. 30–35). https://doi.org/10.1109/HONET59747.2023.10374800

  168. Othman, W., Fuyou, M., Xue, K., & Hawbani, A. (2021). Physically secure lightweight and privacy-preserving message authentication protocol for VANET in smart city. IEEE Transactions on Vehicular Technology, 70(12), 12902–12917. https://doi.org/10.1109/TVT.2021.3121449

    Article  Google Scholar 

  169. Esfahani, A., et al. (2019). A lightweight authentication mechanism for M2M communications in industrial IoT environment. IEEE Internet of Things Journal, 6(1), 288–296. https://doi.org/10.1109/JIOT.2017.2737630

    Article  Google Scholar 

  170. Karati, A., Islam, S. H., & Karuppiah, M. (2018). Provably Secure and Lightweight Certificateless Signature Scheme for IIoT Environments. IEEE Transactions on Industrial Informatics, 14(8), 3701–3711. https://doi.org/10.1109/TII.2018.2794991

    Article  Google Scholar 

  171. Kharghani, E., Aliakbari, S., Bidad, J., & Modarres, A. M. A. (2023) A lightweight authentication protocol for M2M communication in IIoT using physical unclonable functions. In 2023 31st international conference on electrical engineering (ICEE), Tehran (pp. 676–683). https://doi.org/10.1109/ICEE59167.2023.10334808

  172. Gupta, D. S. (2023). PiLike: Post-quantum identity-based lightweight authenticated key exchange protocol for IIoT environments. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2023.3335217

    Article  Google Scholar 

  173. Chen, B., Wu, L., Kumar, N., Choo, K.-K.R., & He, D. (2021). Lightweight searchable public-key encryption with forward privacy over IIoT outsourced data. IEEE Transactions on Emerging Topics in Computing, 9(4), 1753–1764. https://doi.org/10.1109/TETC.2019.2921113

    Article  Google Scholar 

  174. Fan, K., Zhu, S., Zhang, K., Li, H., & Yang, Y. (2019). A lightweight authentication scheme for cloud-based RFID healthcare systems. IEEE Network, 33(2), 44–49. https://doi.org/10.1109/MNET.2019.1800225

    Article  Google Scholar 

  175. Thilagaraj, M., Arul Murugan, C., Ramani, U., Ganesh, C., & Sabarish, P. (2023). A survey of efficient light weight cryptography algorithm for internet of medical things. In 2023 9th international conference on advanced computing and communication systems (ICACCS), Coimbatore (pp. 2105–2109). https://doi.org/10.1109/ICACCS57279.2023.10112818

  176. John, J., & Sinciya, P. O. (2023). Real-time distant healthcare monitoring IoT system secured by light weight cryptography. In 2023 annual international conference on emerging research areas: international conference on intelligent systems (AICERA/ICIS), Kanjirapally (pp. 1–6). https://doi.org/10.1109/AICERA/ICIS59538.2023.10420248

  177. Maram, B., Majji, R., Gopisetty, G. K. D., Garg, A., Daniya, T., & Kumar, B. S. (2023). Lightweight cryptography based deep learning techniques for securing IoT based E-healthcare system. In 2023 2nd international conference on automation, computing and renewable systems (ICACRS), Pudukkottai (pp. 1334–1341). https://doi.org/10.1109/ICACRS58579.2023.10404726

  178. Kp, B. M., & Patwari, N. (2023). Embedded light-weight cryptography technique to preserve privacy of healthcare wearable IoT device data. In 2023 international conference on distributed computing and electrical circuits and electronics (ICDCECE), Ballar (pp. 1–6). https://doi.org/10.1109/ICDCECE57866.2023.10151002

  179. Padmashree, M. G., Khanum, S., Arunalatha, J. S., & Venugopal, K. R. (2019). SIRLC: Secure information retrieval using lightweight cryptography in HIoT. In TENCON 2019—2019 IEEE region 10 conference (TENCON), Kochi (pp. 269–273). https://doi.org/10.1109/TENCON.2019.8929266

  180. Nimmy, K., Sankaran, S., Achuthan, K., & Calyam, P. (2022). Lightweight and privacy-preserving remote user authentication for smart homes. IEEE Access, 10, 176–190. https://doi.org/10.1109/ACCESS.2021.3137175

    Article  Google Scholar 

  181. Nyangaresi, V. O. (2022). Lightweight anonymous authentication protocol for resource-constrained smart home devices based on elliptic curve cryptography. Journal of Systems Architecture, 133, 102763. https://doi.org/10.1016/j.sysarc.2022.102763. ISSN 1383-7621.

    Article  Google Scholar 

  182. Ammi, M., Alarabi, S., & Benkhelifa, E. (2021). Customized blockchain-based architecture for secure smart home for lightweight IoT. Information Processing & Management, 58(3), 102482. https://doi.org/10.1016/j.ipm.2020.102482. ISSN 0306-4573.

    Article  Google Scholar 

  183. An, H., He, D., Peng, C., Luo, M., & Wang, L. (2023). Efficient certificateless online/offline signcryption scheme without bilinear pairing for smart home consumer electronics. IEEE Transactions on Consumer Electronics. https://doi.org/10.1109/TCE.2023.3307697

    Article  Google Scholar 

  184. Verma, G., Pachauri, S., Kumar, A., Patel, D., Kumar, A., & Pandey, A. (2023) Smart home automation with smart security system over the cloud. In 2023 14th international conference on computing communication and networking technologies (ICCCNT), Delhi (pp. 1–7). https://doi.org/10.1109/ICCCNT56998.2023.10306548

  185. Bauer, J., Helmke, R., Zimmermann, T., Bothe, A., Löpmeier, M., & Aschenbruck, N. (2019). Crypto can’t—Confidentiality and privacy forCAN/ISOBUS networks in precision agriculture. IEEE Conferenceon Local Computer Networks (LCN). https://doi.org/10.13140/RG.2.2.24012.97920

    Article  Google Scholar 

  186. Grgić, K., Pejković, A., Zrnić, M., & Spišić, J. (2021). An overview of security aspects of IoT communication technologies for smart agriculture. In 2021 16th international conference on telecommunications (ConTEL), Zagreb (pp. 146–151). https://doi.org/10.23919/ConTEL52528.2021.9495985

  187. Abu-Tair, M., Djahel, S., Perry, P., Scotney, B., Zia, U., Carracedo, J. M., & Sajjad, A. (2020). Towards secure and privacy-preserving IoT enabled smart home: architecture and experimental study. Sensors, 20(21), 6131. https://doi.org/10.3390/s20216131

    Article  Google Scholar 

  188. Prvulović, P., Radosavljević, N., & Babić, Đ. (2021). Analysis of lightweight cryptographic protocols in precision agriculture—A case study. In 2021 15th international conference on advanced technologies, systems and services in telecommunications (TELSIKS), Nis (pp. 295–298). https://doi.org/10.1109/TELSIKS52058.2021.9606294

  189. Itoo, S., Khan, A. A., Ahmad, M., & Idrisi, M. J. (2023). A secure and privacy-preserving lightweight authentication and key exchange algorithm for smart agriculture monitoring system. IEEE Access, 11, 56875–56890. https://doi.org/10.1109/ACCESS.2023.3280542

    Article  Google Scholar 

  190. Saini, R. (2023). A lightweight secure authentication and key exchange algorithm for smart agriculture monitoring systems. In 2023 international conference on data science and network security (ICDSNS), Tiptur (pp. 1–7). https://doi.org/10.1109/ICDSNS58469.2023.10245284

  191. Garg, S., Kaur, K., Kaddoum, G., Rodrigues, J. J. P. C., & Guizani, M. (2020). Secure and lightweight authentication scheme for smart metering infrastructure in smart grid. IEEE Transactions on Industrial Informatics, 16(5), 3548–3557. https://doi.org/10.1109/TII.2019.2944880

    Article  Google Scholar 

  192. Abbasinezhad-Mood, D., & Nikooghadam, M. (2018). Design and hardware implementation of a security-enhanced elliptic curve cryptography based lightweight authentication scheme for smart grid communications. Future Generation Computer Systems, 84, 47–57. https://doi.org/10.1016/j.future.2018.02.034. ISSN 0167-739X.

    Article  Google Scholar 

  193. Gope, P., & Sikdar, B. (2019). Lightweight and privacy-friendly spatial data aggregation for secure power supply and demand management in smart grids. IEEE Transactions on Information Forensics and Security, 14(6), 1554–1566. https://doi.org/10.1109/TIFS.2018.2881730

    Article  Google Scholar 

  194. You, X., et al. (2023). A lightweight authentication scheme in electric internet of things. In 2023 2nd international conference on smart grids and energy systems (SGES), Guangzhou (pp. 368–372). https://doi.org/10.1109/SGES59720.2023.10366947

  195. Wang, W., Huang, H., Zhang, L., Han, Z., Qiu, C., & Su, C. (2020). BlockSLAP: Blockchain-based secure and lightweight authentication protocol for smart grid. In 2020 IEEE 19th international conference on trust, security and privacy in computing and communications (TrustCom), Guangzhou (pp. 1332–1338). https://doi.org/10.1109/TrustCom50675.2020.00179

  196. Jyoti, D., Mehta, P. J., Parne, B. L., & Patel, S. J. (2022). ALKAF: An anonymous lightweight key agreement framework for smart grid network. In 2022 IEEE 19th India council international conference (INDICON), Kochi (pp. 1–6). https://doi.org/10.1109/INDICON56171.2022.10040081

  197. Wang, J., Lim, M. K., Wang, C., & Tseng, M. L. (2021). The evolution of the Internet of Things (IoT) over the past 20 years. Computers & Industrial Engineering, 155, 107174. https://doi.org/10.1016/j.cie.2021.107174. ISSN 0360-8352.

    Article  Google Scholar 

  198. Liu, C., Zhang, Y., Xu, J., Zhao, J., & Xiang, S. (2022). Ensuring the security and performance of IoT communication by improving encryption and decryption with the lightweight cipher uBlock. IEEE Systems Journal, 16(4), 5489–5500. https://doi.org/10.1109/JSYST.2022.3140850

    Article  Google Scholar 

  199. Kundu, N., Debnath, S. K., & Mishra, D. (2021). A secure and efficient group signature scheme based on multivariate public key cryptography. Journal of Information Security and Applications., 58, 102776. https://doi.org/10.1016/j.jisa.2021.102776

    Article  Google Scholar 

  200. Panchami, V., & Mathews, M. M. (2023). A substitution box for lightweight ciphers to secure internet of things. Journal of King Saud University—Computer and Information Sciences, 35(4), 75–89. https://doi.org/10.1016/j.jksuci.2023.03.004. ISSN 1319-1578.

    Article  Google Scholar 

  201. Thabit, F., Can, O., Alhomdy, S., Al-Gaphari, G. H., & Jagtap, S. (2022). A novel effective lightweight homomorphic cryptographic algorithm for data security in cloud computing. International Journal of Intelligent Networks. https://doi.org/10.1016/j.ijin.2022.04.001

    Article  Google Scholar 

  202. AiyshwariyaDevi, R., & Arunachalam, A. R. (2023). Enhancement of IoT device security using an Improved elliptic curve cryptography algorithm and malware detection utilizing deep LSTM. High-Confidence Computing, 3(2), 100117. https://doi.org/10.1016/j.hcc.2023.100117. ISSN 2667-2952.

    Article  Google Scholar 

  203. Dofe, J., Frey, J., Pahlevanzadeh, H., & Yu, Q. (2015). Strengthening SIMON implementation against intelligent fault attacks. IEEE Embedded Systems Letters, 7(4), 113–116. https://doi.org/10.1109/LES.2015.2477273

    Article  Google Scholar 

  204. Roy, I., Rebeiro, C., Hazra, A., & Bhunia, S. (2020). SAFARI: automatic synthesis of fault-attack resistant block cipher implementations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(4), 752–765. https://doi.org/10.1109/TCAD.2019.2897629

    Article  Google Scholar 

  205. Potestad-Ordóñez, F. E., Tena-Sánchez, E., Acosta-Jiménez, A. J., Jiménez-Fernández, C. J., & Chaves, R. (2022). Design and evaluation of countermeasures against fault injection attacks and power side-channel leakage exploration for AES block cipher. IEEE Access, 10, 65548–65561. https://doi.org/10.1109/ACCESS.2022.3183764

    Article  Google Scholar 

  206. Song, J., Kim, Y., & Seo, S. C. (2021). High-speed fault attack resistant implementation of PIPO block cipher on ARM cortex-A. IEEE Access, 9, 162893–162908. https://doi.org/10.1109/ACCESS.2021.3133888

    Article  Google Scholar 

  207. DeCnudde, T., & Nikova, S. (2017). Securing the PRESENT block cipher against combined side-channel analysis and fault attacks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(12), 3291–3301. https://doi.org/10.1109/TVLSI.2017.2713483

    Article  Google Scholar 

  208. Liu, Q., Ning, B., & Deng, P. (2019). Information theory-based quantitative evaluation method for countermeasures against fault injection attacks. IEEE Access, 7, 141920–141928. https://doi.org/10.1109/ACCESS.2019.2944024

    Article  Google Scholar 

  209. Wang, B., et al. (2017). Exploration of benes network in cryptographic processors: A random infection countermeasure for block ciphers against fault attacks. IEEE Transactions on Information Forensics and Security, 12(2), 309–322. https://doi.org/10.1109/TIFS.2016.2612638

    Article  MathSciNet  Google Scholar 

  210. Xu, A., Wu, Y., Yang, J., Zhu, M., Zhao, Q., & Liu, L. (2022). A high-throughput hardware implementation of ZUC-256 stream cipher. In 2022 4th international conference on communications, information system and computer engineering (CISCE), Shenzhen (pp. 24–27). https://doi.org/10.1109/CISCE55963.2022.9851111

  211. Pandey, J. G., Goel, T., Nayak, M., Mitharwal, C., Karmakar, A., & Singh, R. (2018). A high-performance VLSI architecture of the present cipher and its implementations for SoCs. In 2018 31st IEEE International System-on-Chip Conference (SOCC), Arlington (pp. 96–101). https://doi.org/10.1109/SOCC.2018.8618487

  212. SenGupta, S., Chattopadhyay, A., Sinha, K., Maitra, S., & Sinha, B. P. (2013). High-performance hardware implementation for RC4 stream cipher. IEEE Transactions on Computers, 62(4), 730–743. https://doi.org/10.1109/TC.2012.19

    Article  MathSciNet  Google Scholar 

  213. Amdouni, R., Gafsi, M., Guesmi, R., Hajjaji, M. A., Mtibaa, A., & Bourennane, E. B. (2022). High-performance hardware architecture of a robust block-cipher algorithm based on different chaotic maps and DNA sequence encoding. Integration, 87, 346–363. https://doi.org/10.1016/j.vlsi.2022.08.002. ISSN 0167-9260.

    Article  Google Scholar 

  214. Kumar, A., Singh, P., Patro, K. A. K., & Acharya, B. (2023). High-throughput and area-efficient architectures for image encryption using PRINCE cipher. Integration, 90, 224–235. https://doi.org/10.1016/j.vlsi.2023.01.011. ISSN 0167-9260.

    Article  Google Scholar 

  215. Manoj, G. S., Sravanthi, B., Thirumal, G., & Venishetty, S. R. (2018). VLSI implementation of SMS4 cipher for optimized utilization of FPGA. In 2018 2nd international conference on inventive communication and computational technologies (ICICCT), Coimbatore (pp. 1225–1231). https://doi.org/10.1109/ICICCT.2018.8472979

  216. Ashaq, S., Nazish, M., Ali, M., Sultan, I., & Tariq Banday, M. (2022). FPGA implementation of PRESENT block cypher with optimised substitution box. In 2022 smart technologies, communication and robotics (STCR), Sathyamangalam (pp. 1–6). https://doi.org/10.1109/STCR55312.2022.10009366

  217. Tang, Y., Gong, Z., Sun, T., Chen, J., & Liu, Z. (2022). WBMatrix: An optimized matrix library for white-box block cipher implementations. IEEE Transactions on Computers, 71(12), 3375–3388. https://doi.org/10.1109/TC.2022.3152449

    Article  Google Scholar 

  218. Kim, Y., & Seo, S. C. (2022). Optimized implementation of PIPO block cipher on 32-Bit ARM and RISC-V processors. IEEE Access, 10, 97298–97309. https://doi.org/10.1109/ACCESS.2022.3205617

    Article  Google Scholar 

  219. Nakhate, S., & Kumar, A. R. (2020). Fast hartley transform based elliptic curve cryptography for resource constrained devices. In 2020 international conference on emerging smart computing and informatics (ESCI), Pune (pp. 71–76). https://doi.org/10.1109/ESCI48226.2020.9167611

  220. They, Y.-S., Phang, S.-Y., Lee, S., Lee, H. J., & Lim, H. (2008). CPOP: Cryptography process offloading proxy for resource constrained devices. In 2008 international conference on information security and assurance (ISA 2008), Busan (pp. 289–294). https://doi.org/10.1109/ISA.2008.107

  221. Li, X., Jiang, C., Du, D., Fei, M., & Wu, L. (2023). A novel revocable lightweight authentication scheme for resource-constrained devices in cyber-physical power systems. IEEE Internet of Things Journal, 10(6), 5280–5292. https://doi.org/10.1109/JIOT.2022.3221943

    Article  Google Scholar 

  222. Ding, X., Wang, X., Xie, Y., & Li, F. (2022). a lightweight anonymous authentication protocol for resource-constrained devices in internet of things. IEEE Internet of Things Journal, 9(3), 1818–1829. https://doi.org/10.1109/JIOT.2021.3088641

    Article  Google Scholar 

  223. Farha, F., Ning, H., Ali, K., Chen, L., & Nugent, C. (2021). SRAM-PUF-based entities authentication scheme for resource-constrained IoT devices. IEEE Internet of Things Journal, 8(7), 5904–5913. https://doi.org/10.1109/JIOT.2020.3032518

    Article  Google Scholar 

  224. Xu, D., et al. (2022). Ring-ExpLWE: A high-performance and lightweight post-quantum encryption scheme for resource-constrained IoT devices. IEEE Internet of Things Journal, 9(23), 24122–24134. https://doi.org/10.1109/JIOT.2022.3189210

    Article  Google Scholar 

  225. Shahbazi, K., & Ko, S.-B. (2021). Area-efficient Nano-AES implementation for internet-of-things devices. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 29(1), 136–148. https://doi.org/10.1109/TVLSI.2020.3033928

    Article  Google Scholar 

  226. Prakasam, P., Madheswaran, M., Sujith, K. P., & Sayeed, M. S. (2021). An enhanced energy efficient lightweight cryptography method for various IoT devices. ICT Express. https://doi.org/10.1016/j.icte.2021.03.007

    Article  Google Scholar 

  227. Asare, B. T., Quist-Aphetsi, K., & Nana, L. (2019) A hybrid lightweight cryptographic scheme for securing node data based on the feistel cipher and MD5 hash algorithm in a local IoT network. In 2019 international conference on mechatronics, remote sensing, information systems and industrial information technologies (ICMRSISIIT), Ghana (pp. 1–5). https://doi.org/10.1109/ICMRSISIIT46373.2020.9405869

  228. Chatterjee, R., & Chakraborty, R. (2020). A modified lightweight PRESENT cipher for IoT security. In 2020 international conference on computer science, engineering and applications (ICCSEA), Gunupur (pp. 1–6). https://doi.org/10.1109/ICCSEA49143.2020.9132950

  229. Muzaffar, S., Waheed, O. T., Aung, Z., & Elfadel, I. M. (2021). Lightweight, single-clock-cycle, multilayer cipher for single-channel IoT communication: design and implementation. IEEE Access, 9, 66723–66737. https://doi.org/10.1109/ACCESS.2021.3076468

    Article  Google Scholar 

  230. Tao, H., Bhuiyan, M. Z. A., Abdalla, A. N., Hassan, M. M., Zain, J. M., & Hayajneh, T. (2019). Secured data collection with hardware-based ciphers for IoT-based healthcare. IEEE Internet of Things Journal, 6(1), 410–420. https://doi.org/10.1109/JIOT.2018.2854714

    Article  Google Scholar 

  231. Aboushosha, B., Ramadan, R. A., Dwivedi, A. D., El-Sayed, A., & Dessouky, M. M. (2020). SLIM: A lightweight block cipher for internet of health things. IEEE Access, 8, 203747–203757. https://doi.org/10.1109/ACCESS.2020.3036589

    Article  Google Scholar 

  232. Tanizawa, K., & Futami, F. (2018). PSK Y-00 quantum stream cipher with 217 levels enabled by coarse-to-fine modulation using cascaded phase modulators. In 2018 European conference on optical communication (ECOC), Rome (pp. 1–3). https://doi.org/10.1109/ECOC.2018.8535443

  233. Li, Y., Pu, T., Zheng, J., Xiang, P., Li, J., & Zhang, X. (2021). Experimental demonstration of an optical domain decryption method for PSK quantum noise randomized cipher. In 2021 19th international conference on optical communications and networks (ICOCN), Qufu (pp. 1–3). https://doi.org/10.1109/ICOCN53177.2021.9563786

  234. Futami, F., Tanizawa, K., & Kato, K. (2020). Y-00 quantum-noise randomized stream cipher using intensity modulation signals for physical layer security of optical communications. Journal of Lightwave Technology, 38(10), 2774–2781. https://doi.org/10.1109/JLT.2020.2985709

    Article  Google Scholar 

  235. Lei, C., et al. (2021). 16 QAM quantum noise stream cipher coherent transmission over 300 km without intermediate amplifier. IEEE Photonics Technology Letters, 33(18), 1002–1005. https://doi.org/10.1109/LPT.2021.3081797

    Article  Google Scholar 

  236. Nakazawa, M., et al. (2017). qam quantum noise stream cipher transmission over 100 km with continuous variable quantum key distribution. IEEE Journal of Quantum Electronics, 53(4), 1–16. https://doi.org/10.1109/JQE.2017.2708523

    Article  Google Scholar 

  237. Yang, X., Zhang, J., Li, Y., Zhao, Y., Gao, G., & Zhang, H. (2019). DFTs-OFDM based quantum noise stream cipher system. Optical Fiber Technology., 52, 101939. https://doi.org/10.1016/j.yofte.2019.101939

    Article  Google Scholar 

  238. Zakaria, A. A., Azni, A. H., Ridzuan, F., Zakaria, N. H., & Daud, M. (2020). Extended RECTANGLE algorithm using 3D bit rotation to propose a new lightweight block cipher for IoT. IEEE Access, 8, 198646–198658. https://doi.org/10.1109/ACCESS.2020.3035375

    Article  Google Scholar 

  239. Kim, T.-H., Kumar, G., Saha, R., Buchanan, W. J., Devgun, T., & Thomas, R. (2021). LiSP-XK: extended light-weight signcryption for IoT in resource-constrained environments. IEEE Access, 9, 100972–100980. https://doi.org/10.1109/ACCESS.2021.3097267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Bhushan, B. Recent Lightweight cryptography (LWC) based security advances for resource-constrained IoT networks. Wireless Netw (2024). https://doi.org/10.1007/s11276-024-03714-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11276-024-03714-4

Keywords

Navigation