Skip to main content
Log in

UAV 5G: enabled wireless communications using enhanced deep learning for edge devices

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With the assistance of unmanned aerial vehicles (UAVs), wireless communication networks can provide connectivity to edge devices (EDs) even in challenging signal conditions. However, the forthcoming 6th generation mobile networks (6G) will demand increased energy, while EDs typically have limited energy resources. Furthermore, EDs often struggle to accurately track dynamic UAV positions due to time-lag mechanisms, hindering their ability to adapt emission energy dynamically. Additionally, fixed emission power settings on EDs contribute to their limited endurance. To address these challenges, we propose a deep learning-based energy-aware optimization technique (DEO) in this study. DEO dynamically adjusts the emission power of EDs to ensure that the received energy at the mobile relay UAV closely matches the receiver's sensitivity, while minimizing energy consumption. The edge server plays a crucial role by providing computational infrastructure for this task. Our approach employs the enhanced gradient-based graph recurrent neural network (Gradient GRNN) deep learning technique to predict the dynamic locations of relay UAVs. Based on these predictions, the emission energy of EDs is adaptively modified, enabling reliable connections with mobile relay UAVs while conserving energy. Through extensive simulations, we evaluate the effectiveness of various predictive networks under different time-delay conditions (0.4 s, 0.6 s, and 0.8 s). The results demonstrate that, even with communication delays, the algorithm achieves low weighted mean absolute percentage errors (WMAPE) of 0.54%, 0.80%, and 1.15%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen, C., Xiang, J., Ye, Z., Yan, W., Wang, S., Wang, Z., Chen, P., & Xiao, M. (2022). Deep learning-based energy optimization for edge device in UAV-aided communications. Drones, 6(6), 139.

    Article  Google Scholar 

  2. Li, A., Masouros, C., Vucetic, B., Li, Y., & Swindlehurst, A. L. (2021). Interference exploitation precoding for multi-level modulations: Closed-form solutions. IEEE Transactions on Communications, 69(1), 291–308.

    Article  Google Scholar 

  3. Li, B., Zhou, X., Ning, Z., Guan, X., & Yiu, K. (2022). C, Dynamic event-triggered security control for networked control systems with cyber-attacks: A model predictive control approach. Information Sciences, 612, 384–398.

    Article  Google Scholar 

  4. Ding, G., Anselmi, N., Xu, W., Li, P., & Rocca, P. (2023). Interval-bounded optimal power pattern synthesis of array antenna excitations robust to mutual coupling. IEEE Antennas and Wireless Propagation Letters, 22, 2725–2729.

    Article  Google Scholar 

  5. Yao, Y., Shu, F., Li, Z., Cheng, X., & Wu, L. (2023). Secure transmission scheme based on joint radar and communication in mobile vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 24, 10027–10037.

    Article  Google Scholar 

  6. Jiang, Y., & Li, X. (2022). Broadband cancellation method in an adaptive co-site interference cancellation system. International Journal of Electronics, 109(5), 854–874.

    Article  Google Scholar 

  7. Zhao, J., Gao, F., Jia, W., Yuan, W., & Jin, W. (2023). Integrated sensing and communications for UAV communications with jittering effect. IEEE Wireless Communications Letters, 12(4), 758–62.

    Article  Google Scholar 

  8. Zhao, Z., Xu, G., Zhang, N., & Zhang, Q. (2022). Performance analysis of the hybrid satellite-terrestrial relay network with opportunistic scheduling over generalized fading channels. IEEE Transactions on Vehicular Technology, 71(3), 2914–2924.

    Article  Google Scholar 

  9. Almalki, F. A., Soufiene, B. O., Alsamhi, S. H., & Sakli, H. (2021). A low-cost platform for environmental smart farming monitoring system based on IoT and UAVs. Sustainability, 13(11), 5908.

    Article  Google Scholar 

  10. Qi, W., Li, Q., Song, Q., Guo, L., & Jamalipour, A. (2021). Extensive edge intelligence for future vehicular networks in 6G. IEEE Wireless Communications, 28(4), 128–135.

    Article  Google Scholar 

  11. Alsamhi, S. H., Almalki, F., Ma, O., Ansari, M. S., & Lee, B. (2021). Predictive estimation of optimal signal strength from drones over IoT frameworks in smart cities. IEEE Transactions on Mobile Computing., 22, 402–416.

    Article  Google Scholar 

  12. Li, B., Zhang, M., Rong, Y., & Han, Z. (2021). Transceiver optimization for wireless powered time-division duplex MU-MIMO systems: Non-robust and robust designs. IEEE Transactions on Wireless Communications, 21(6), 4594–4607.

    Article  Google Scholar 

  13. Bai, X., Huang, M., Xu, M., & Liu, J. (2023). Reconfiguration optimization of relative motion between elliptical orbits using Lyapunov–Floquet transformation. IEEE Transactions on Aerospace and Electronic Systems, 59(2), 923–936.

    Google Scholar 

  14. Guo, F., Zhou, W., Lu, Q., & Zhang, C. (2022). Path extension similarity link prediction method based on matrix algebra in directed networks. Computer Communications, 187, 83–92.

    Article  Google Scholar 

  15. Gupta, A., Sundhan, S., Gupta, S. K., Alsamhi, S. H., & Rashid, M. (2020). Collaboration of UAV and HetNet for better QoS: A comparative study. International Journal of Vehicle Information and Communication Systems, 5(3), 309–333.

    Article  Google Scholar 

  16. Saif, A., Dimyati, K.B., Noordin, K.A.B., Shah, N.S.M., Alsamhi, S.H., Abdullah, Q. & Farah, N. (2021). Distributed clustering for user devices under unmanned aerial vehicle coverage area during disaster recovery. arXiv:2103.07931.

  17. Cao, K., Wang, B., Ding, H., Lv, L., Dong, R., Cheng, T., & Gong, F. (2021). Improving physical layer security of uplink NOMA via energy harvesting jammers. IEEE transactions on information forensics and security, 16, 786–799.

    Article  Google Scholar 

  18. Alsamhi, S. H., Almalki, F. A., Al-Dois, H., Shvetsov, A. V., Ansari, M. S., Hawbani, A., Gupta, S. K., & Lee, B. (2021). Multi-drone edge intelligence and SAR smart wearable devices for emergency communication. Wireless Communications and Mobile Computing, 2021, 1–12.

    Article  Google Scholar 

  19. Jiang, S., Zhao, C., Zhu, Y., Wang, C., Du, Y., Lei, W., & Wang, L. (2022). A practical and economical ultra-wideband base station placement approach for indoor autonomous driving systems. Journal of advanced transportation, 1–12, 2022.

    Google Scholar 

  20. Alsharif, M. H., Kelechi, A. H., Albreem, M. A., Chaudhry, S. A., Zia, M. S., & Kim, S. (2020). Sixth generation (6G) wireless networks: Vision, research activities, challenges and potential solutions. Symmetry, 12(4), 676.

    Article  Google Scholar 

  21. Zhang, C., Xiao, P., Zhao, Z., Liu, Z., Yu, J., Hu, X., & Li, G. (2023). A wearable localized surface plasmons antenna sensor for communication and sweat sensing. IEEE Sensors Journal, 23(11), 11591–11599.

    Article  Google Scholar 

  22. Luo, J., Zhao, C., Chen, Q., & Li, G. (2022). Using deep belief network to construct the agricultural information system based on Internet of Things. The Journal of Supercomputing, 78(1), 379–405.

    Article  Google Scholar 

  23. Xiao, Z., Shu, J., Jiang, H., Min, G., Liang, J., & Iyengar, A. (2022). Toward collaborative occlusion-free perception in connected autonomous vehicles. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2023.3298643

    Article  Google Scholar 

  24. Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278.

    Article  Google Scholar 

  25. Liu, C., Yuan, W., Wei, Z., Liu, X., & Ng, D. W. K. (2020). Location-aware predictive beamforming for UAV communications: A deep learning approach. IEEE Wireless Communications Letters, 10(3), 668–672.

    Article  Google Scholar 

  26. Cheng, B., Wang, M., Zhao, S., Zhai, Z., Zhu, D., & Chen, J. (2017). Situation-aware dynamic service coordination in an IoT environment. IEEE/ACM Transactions On Networking, 25(4), 2082–2095.

    Article  Google Scholar 

  27. Liu, X., Zhou, G., Kong, M., Yin, Z., Li, X., Yin, L., & Zheng, W. (2023). Developing multi-labelled corpus of twitter short texts: A semi-automatic method. Systems, 11(8), 390.

    Article  Google Scholar 

  28. Alahdadi, A., Safaei, A. A., & Ebadi, M. J. (2023). A truthful and budget-balanced double auction model for resource allocation in cloud computing. Soft Computing, 27, 18263–18284.

    Article  Google Scholar 

  29. Wang, X., Wang, Y., Javaheri, Z., Almutairi, L., Moghadamnejad, N., & Younes, O. S. (2023). Federated deep learning for anomaly detection in the internet of things. Computers and Electrical Engineering, 108, 108651.

    Article  Google Scholar 

  30. Liu, Q., Kosarirad, H., Meisami, S., Alnowibet, K. A., & Hoshyar, A. N. (2023). An optimal scheduling method in IoT-fog-cloud network using combination of Aquila optimizer and African vultures optimization. Processes, 11(4), 1162.

    Article  Google Scholar 

  31. Peivandizadeh, A. & Molavi, B. (2023). Compatible authentication and key agreement protocol for low power and Lossy network in IoT environment. Available at SSRN 4454407.

  32. Dehghani, F. & Larijani, A. (2023). Average portfolio optimization using multi-layer neural networks with risk consideration. Available at SSRN.

  33. Yang, H. Q., Zeng, Y. Y., Lan, Y. F., & Zhou, X. P. (2014). Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading. International Journal of Rock Mechanics and Mining Sciences, 69, 59–66.

    Article  Google Scholar 

  34. Yang, H., Wang, Z., & Song, K. (2020). A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance. Engineering with Computers, 38, 2469–2485.

    Article  Google Scholar 

  35. Chen, J., Wen, L., Bi, C., Liu, Z., Liu, X., & YinZheng, L. W. (2023). Multifractal analysis of temporal and spatial characteristics of earthquakes in Eurasian seismic belt. Open Geosciences, 15(1), 2023.

    Article  Google Scholar 

  36. Lv, Z., Qiao, L., Hossain, M. S., & Choi, B. J. (2021). Analysis of using blockchain to protect the privacy of drone big data. IEEE Network, 35(1), 44–49.

    Article  Google Scholar 

  37. Zhou, D., Sheng, M., Li, J., & Han, Z. (2023). Aerospace integrated networks innovation for empowering 6G: A survey and future challenges. IEEE Communications Surveys & Tutorials, 25(2), 975–1019.

    Article  Google Scholar 

  38. Anand, A., De Veciana, G., & Shakkottai, S. (2020). Joint scheduling of URLLC and eMBB traffic in 5G wireless networks. IEEE/ACM Transactions on Networking, 28(2), 477–490.

    Article  Google Scholar 

  39. Lu, S., Ding, Y., Liu, M., Yin, Z., Yin, L., & Zheng, W. (2023). Multiscale feature extraction and fusion of image and text in VQA. International Journal of Computational Intelligence Systems, 16(1), 54.

    Article  Google Scholar 

  40. Yang, H., Chen, C., Ni, J., & Karekal, S. (2023). A hyperspectral evaluation approach for quantifying salt-induced weathering of sandstone. Science of The Total Environment, 885, 163886.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derong Tang.

Ethics declarations

Conflicts of interest

There is no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Zhang, Q. UAV 5G: enabled wireless communications using enhanced deep learning for edge devices. Wireless Netw (2023). https://doi.org/10.1007/s11276-023-03589-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-023-03589-x

Keywords

Navigation