Skip to main content
Log in

A machine learning multi-hop physical layer authentication with hardware impairments

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Authentication is one of the major requirements of wireless networks security, which uses to distinguish legal transmitter from illegal transmitter. Physical layer authentication by taking advantages of channel characteristics has become an effective complement to encryption based authentication methods. In this paper, we propose a machine learning relay assisted authentication for dual-hop multiple-input multiple-output (MIMO) systems with hardware impairments. So far, the multi-hop authentication has not been investigated to identify the transmitter at the receiver. Motivated by this, we use channel features for end-to-end authentication. To implement this technique in the practical systems, channel estimation is implemented in the presence of hardware impairments. The neural network is used to recognize the legitimate transmitter from the attacker in this system. Simulation results show that the proposed method provides a significant improvement in authentication performance using the extracted features with neural network method. Numerical results show that the proposed method presents more than 90% authentication accuracy for both of one-hop and two-hop PLA scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. A, B and E indicate Alice, Bob and Eve, respectively.

References

  1. Wang, N., Li, W., Wang, P., Alipour-Fanid, A., Jiao, L., & Zeng, K. (2020). Physical layer authentication for 5G communications: Opportunities and road ahead. IEEE Network, 34(6), 198–204.

    Article  Google Scholar 

  2. Forouzesh, M., Azmi, P., Kuhestani, A., & Yeoh, P. L. (2021). Joint information-theoretic secrecy and covert communication in the presence of an untrusted user and warden. IEEE Internet of Things Journal, 8(9), 7170–7181.

    Article  Google Scholar 

  3. Angueira, P., Val, I., Montalbán, J., Seijo, Ó., Iradier, E., Sanz Fontaneda, P., Fanari, L., & Arriola, A. (2022). A survey of physical layer techniques for secure wireless communications in industry. IEEE Communications Surveys & Tutorials, 24(2), 810–838.

    Article  Google Scholar 

  4. Hamamreh, J. M., Furqan, H. M., & Arslan, H. (2019). Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Communications Surveys & Tutorials, 21(2), 1773–1828.

    Article  Google Scholar 

  5. Kazemi, M., Mohammadi, A., & Duman, T. M. (2020). Analysis of DF relay selection in massive MIMO systems with hardware impairments. IEEE Transactions on Vehicular Technology, 69(6), 6141–6152.

    Article  Google Scholar 

  6. Kingston Roberts, M., Kumari, S., & Anguraj, P. (2021). Certain investigations on recent advances in the design of decoding algorithms using low-density parity-check codes and its applications. International Journal of Communication, 34(8), e4765.

    Article  Google Scholar 

  7. Zhang, J., Rajendran, S., Sun, Z., Woods, R., & Hanzo, L. (2019). Physical layer security for the Internet of Things: Authentication and key generation. IEEE Wireless Communications, 26(5), 92–98.

    Article  Google Scholar 

  8. Zou, Y., Zhu, J., Wang, X., & Hanzo, L. (2016). A survey on wireless security: Technical challenges, recent advances, and future trends. Proceedings of the IEEE, 104(9), 1727–1756.

    Article  Google Scholar 

  9. Shahiri, V., Kuhestani, A., & Hanzo, L. (2022). Short-packet amplify-and-forward relaying for the Internet-of-Things in the face of imperfect channel estimation and hardware impairments. IEEE Transactions on Green Communications and Networking, 6(1), 20–36.

    Article  Google Scholar 

  10. Tatar Mamaghani, M., Kuhestani, A., & Behroozi, H. (2021). Can a multi-hop link relying on untrusted amplify-and-forward relays render security? Wireless Networks, 27, 795–807.

    Article  Google Scholar 

  11. Wu, X., & Yang, Zh. (2015). Physical-layer authentication for multi-carrier transmission. IEEE Communications Letters, 19(1), 74–77.

    Article  Google Scholar 

  12. Xie, F., Pang, Zh., Wen, H., Lei, W., & Xu, X. (2022). Weighted voting in physical layer authentication for industrial wireless edge networks. IEEE Transactions on Industrial Informatics, 18(4), 2796–2806.

    Article  Google Scholar 

  13. Bai, L., Zhu, L., Liu, J., Choi, J., & Zhang, W. (2020). Physical layer authentication in wireless communication networks: A survey. Journal of Communications and Information Networks, 5(3), 237–264.

    Article  Google Scholar 

  14. Xie, N., Chen, J., & Huang, L. (2021). Physical-layer authentication using multiple channel-based features. IEEE Transactions on Information Forensics and Security, 16, 2356–2366.

    Article  Google Scholar 

  15. Baracca, P., Laurenti, N., & Tomasin, S. (2012). Physical layer authentication over MIMO fading wiretap channels. IEEE Transactions on Wireless Communications, 11(7), 2564–2573.

    Article  Google Scholar 

  16. Zhang, P., Taleb, T., Jiang, X., & Wu, B. (2020). Physical layer authentication for massive MIMO systems with hardware impairments. IEEE Transactions on Wireless Communications, 19(3), 1563–1576.

    Article  Google Scholar 

  17. Olwal, T. O., Djouani, K., & Kurien, A. M. (2016). A survey of resource management toward 5G radio access networks. IEEE Communications Surveys & Tutorials, 18(3), 1656–1686.

    Article  Google Scholar 

  18. Yu, P. L., & Sadler, B. M. (2011). MIMO authentication via deliberate fingerprinting at the physical layer. IEEE Transactions on Information Forensics and Security, 6(3), 606–615.

    Article  Google Scholar 

  19. Zhang, P., Shen, Y., Jiang, X., & Wu, B. (2020). Physical layer authentication jointly utilizing channel and phase noise in MIMO systems. IEEE Transactions on Communications, 68(4), 2446–2458.

    Article  Google Scholar 

  20. Dong, S., Wang, P., & Abbas, K. (2021). A survey on deep learning and its applications. Computer Science Review, 40, 100379.

    Article  MathSciNet  Google Scholar 

  21. Tang, F., Mao, B., Kawamoto, Y., & Kato, N. (2021). Survey on machine learning for intelligent end-to-end communication toward 6G: From network access, routing to traffic control and streaming adaption. IEEE Communications Surveys & Tutorials, 23(3), 1578–1598.

    Article  Google Scholar 

  22. Wang, Sh., Huang, K., Xu, X., Zhong, Zh., & Zhou, Y. (2022). CSI-based physical layer authentication via deep learning. IEEE Wireless Communications Letters, 11(8), 1748–1752.

    Article  Google Scholar 

  23. Qiu, X., Dai, J., & Hayes, M. (2020). A learning approach for physical layer authentication using adaptive neural network. IEEE Access, 8, 26139–26149.

    Article  Google Scholar 

  24. Kumar Kamboj, A., Jindal, P., & Verma, P. (2021). Machine learning-based physical layer security: Techniques, open challenges, and applications. Wireless Networks, 228(4), 5351–5383.

    Article  Google Scholar 

  25. Le, H. D., & Pham, A. T. (2022). Link-layer retransmission-based error-control protocols in FSO communications: A survey. IEEE Communication Surveys and Tutorials, 24(3), 1602–1633.

    Article  Google Scholar 

  26. Du, X., Shan, D., Zeng, K., & Huie, L. Physical layer challenge-response authentication in wireless networks with relay, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, (2014).

  27. Zhang, P., Zhu, J., Chen, Y., & Jiang, X. (2019). End-to-end physical layer authentication for dual-hop wireless networks. IEEE Access, 7, 38322–38336.

    Article  Google Scholar 

  28. Courville, A., Goodfellow, I., & Bengio, Y. Deep learning, MIT Press, (2016).

Download references

Acknowledgements

The authors are gratefully acknowledge the insightful comments of the editor and anonymous reviewers that highly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzati Khatab, Z., Mohammadi, A., Pourahmadi, V. et al. A machine learning multi-hop physical layer authentication with hardware impairments. Wireless Netw 30, 1453–1464 (2024). https://doi.org/10.1007/s11276-023-03577-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03577-1

Keywords

Navigation