Skip to main content
Log in

Joint optimization algorithm of offloading decision and resource allocation based on integrated sensing, communication, and computation

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Sixth-generation wireless systems not only have more demanding communication requirements, they are also expected to have high-precision sensing capabilities and sufficient computing power. Integrated sensing, communication, and computation (ISCC) can meet the above system requirements and save spectrum resources. In this paper, we build a resource allocation and offloading decision problem in an ISCC scenario that makes considerations for user mobility and partial offloading policies. The established problem minimizes the average task cost when given constraints such as the typical sensing failure rate and task completion delay. We use Lyapunov optimization theory to transform the proposed problem and propose a two-level optimization algorithm based on matching theory to offer a solution for the transformed problem. The inner layer obtains the task offloading ratio through theoretical derivation, and the outer layer determines the base station access and channel assignment based on the inner layer results. The simulation results show that the average task cost can be effectively reduced while also guaranteeing high-quality sensing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shirin Abkenar, F., Ramezani, P., Iranmanesh, S., Murali, S., Chulerttiyawong, D., Wan, X. Y., Jamalipour, A., & Raad, R. (2022). A survey on mobility of edge computing networks in IoT: State-of-the-Art, architectures, and challenges. IEEE Communications Surveys & Tutorials, 24(4), 2329–2365. https://doi.org/10.1109/COMST.2022.3211462

    Article  Google Scholar 

  2. Liu, A., Huang, Z., Li, M., Wan, Y. B., Li, W. R., Han, T. X., Liu, C. C., Du, R., Tan, D. K. P., Lu, J. M., Shen, Y., Colone, F., & Chetty, K. (2022). A survey on fundamental limits of integrated sensing and communication. IEEE Communications Surveys & Tutorials, 24(2), 994–1034. https://doi.org/10.1109/COMST.2022.3149272

    Article  Google Scholar 

  3. Feng, Z., Wei, Z., Chen, X., Yang, H., Zhang, Q., & Zhang, P. (2021). Joint communication, sensing, and computation enabled 6G intelligent machine system. IEEE Network, 35(6), 34–42. https://doi.org/10.1109/MNET.121.2100320

    Article  Google Scholar 

  4. Zhao, L., Wu, D., Zhou, L., & Qian, Y. (2022). Radio resource allocation for integrated sensing, communication, and computation networks. IEEE Transactions on Wireless Communications, 21(10), 8675–8687. https://doi.org/10.1109/TWC.2022.3168348

    Article  Google Scholar 

  5. Kao, Y.-H., Krishnamachari, B., Ra, M.-R., & Bai, F. (2017). Hermes: Latency optimal task assignment for resource-constrained mobile computing. IEEE Transactions on Mobile Computing, 16(11), 3056–3069. https://doi.org/10.1109/TMC.2017.2679712

    Article  Google Scholar 

  6. Wang, C., Yu, F. R., Liang, C., Chen, Q., & Tang, L. (2017). Joint computation offloading and interference management in wireless cellular networks with mobile edge computing. IEEE Transactions on Vehicular Technology, 66(8), 7432–7445. https://doi.org/10.1109/TVT.2017.2672701

    Article  Google Scholar 

  7. Bi, J., Yuan, H., Duanmu, S., Zhou, M., & Abusorrah, A. (2021). Energy-optimized partial computation offloading in mobile-edge computing with genetic simulated-annealing-based particle swarm optimization. IEEE Internet of Things Journal, 8(5), 3774–3785. https://doi.org/10.1109/JIOT.2020.3024223

    Article  Google Scholar 

  8. Wu, Y.-C., Dinh, T. Q., Fu, Y., Lin, C., & Quek, T. Q. S. (2021). A hybrid DQN and optimization approach for strategy and resource allocation in MEC networks. IEEE Transactions on Wireless Communications, 20(7), 4282–4295. https://doi.org/10.1109/TWC.2021.3057882

    Article  Google Scholar 

  9. Yuan, H., Guo, D., Tang, G., & Luo, L. (2022). Online energy-aware task dispatching with QoS guarantee in edge computing. Chinese Journal on Internet of Things., 5(2), 71–77. https://doi.org/10.11959/j.issn.2096-3750.2021.00230

    Article  Google Scholar 

  10. Peng, J., Qiu, H., Cai, J., Xu, W., & Wang, J. (2021). D2D-assisted multi-user cooperative partial offloading, transmission scheduling and computation allocating for MEC. IEEE Transactions on Wireless Communications, 20(8), 4858–4873. https://doi.org/10.1109/TWC.2021.3062616

    Article  Google Scholar 

  11. Saleem, U., Liu, Y., Jangsher, S., Tao, X., & Li, Y. (2020). Latency minimization for D2D-enabled partial computation offloading in mobile edge computing. IEEE Transactions on Vehicular Technology, 69(4), 4472–4486. https://doi.org/10.1109/TVT.2020.2978027

    Article  Google Scholar 

  12. Zhan, W., Luo, C., Min, G., Wang, C., Zhu, Q., & Duan, H. (2022). Mobility-aware multi-user offloading optimization for mobile edge computing. IEEE Transactions on Vehicular Technology, 69(3), 3341–3356. https://doi.org/10.1109/TVT.2020.2966500

    Article  Google Scholar 

  13. Yang, G., Hou, L., He, X., He, D., Chan, S., & Guizani, M. (2021). Offloading time optimization via markov decision process in mobile-edge computing. IEEE Internet of Things Journal, 8(4), 2483–2493. https://doi.org/10.1109/JIOT.2020.3033285

    Article  Google Scholar 

  14. Liang, Z., Liu, Y., Lok, T.-M., & Huang, K. (2022). A two-timescale approach to mobility management for multicell mobile edge computing. IEEE Transactions on Wireless Communications, 21(12), 10981–10995. https://doi.org/10.1109/TWC.2022.3188695

    Article  Google Scholar 

  15. Labriji, I., Meneghello, F., Cecchinato, D., Sesia, S., Perraud, E., Calvanese Strinati, E., & Rossi, M. (2021). Mobility aware and dynamic migration of MEC services for the internet of vehicles. IEEE Transactions on Network and Service Management, 18(1), 570–584. https://doi.org/10.1109/TNSM.2021.3052808

    Article  Google Scholar 

  16. Saleem, U., Liu, Y., Jangsher, S., Li, Y., & Jiang, T. (2021). Mobility-aware joint task scheduling and resource allocation for cooperative mobile edge computing. IEEE Transactions on Wireless Communications, 20(1), 360–374. https://doi.org/10.1109/TWC.2020.3024538

    Article  Google Scholar 

  17. Hu, H., Wang, Q., Hu, R. Q., & Zhu, H. (2021). Mobility-aware offloading and resource allocation in a MEC-enabled IoT network with energy harvesting. IEEE Internet of Things Journal, 8(24), 17541–17556. https://doi.org/10.1109/JIOT.2021.3081983

    Article  Google Scholar 

  18. Nguyen, H. T., Hoang, D. T., Luong, N. C., Niyato, D., & Kim, D. I. (2021). A hierarchical game model for OFDM integrated radar and communication systems. IEEE Transactions on Vehicular Technology, 70(5), 2077–2082. https://doi.org/10.1109/TVT.2021.3069431

    Article  Google Scholar 

  19. Liu, Y., Liao, G., Xu, J., Yang, Z., & Zhang, Y. (2017). Adaptive OFDM integrated radar and communications waveform design based on information theory. IEEE Communications Letters, 21(10), 2174–2177. https://doi.org/10.1109/LCOMM.2017.2723890

    Article  Google Scholar 

  20. Shi, C., Wang, Y., Wang, F., Salous, S., & Zhou, J. (2021). Joint optimization scheme for subcarrier selection and power allocation in multicarrier dual-function radar-communication system. IEEE Systems Journal, 15(1), 947–958. https://doi.org/10.1109/JSYST.2020.2984637

    Article  Google Scholar 

  21. Qi, Q., Chen, X., Khalili, A., Zhong, C., Zhang, Z., & Ng, D. W. K. (2022). Integrating sensing, computing, and communication in 6G wireless networks: Design and optimization. IEEE Transactions on Communications, 70(9), 6212–6227. https://doi.org/10.1109/TCOMM.2022.3190363

    Article  Google Scholar 

  22. Ding, Z., Xu, D., Schober, R., & Poor, H. V. (2022). Hybrid NOMA offloading in multi-user MEC networks. IEEE Transactions on Wireless Communications, 21(7), 5377–5391. https://doi.org/10.1109/TWC.2021.3139932

    Article  Google Scholar 

  23. Chai, R., Lin, J., Chen, M., & Chen, Q. (2019). Task execution cost minimization-based joint computation offloading and resource allocation for cellular D2D MEC systems. IEEE Systems Journal, 13(4), 4110–4121. https://doi.org/10.1109/JSYST.2019.2921115

    Article  Google Scholar 

  24. Liang, Z., Liu, Y., Lok, T.-M., & Huang, K. (2021). Multi-cell mobile edge computing: joint service migration and resource allocation. IEEE Transactions on Wireless Communications, 20(9), 5898–5912. https://doi.org/10.1109/TWC.2021.3070974

    Article  Google Scholar 

  25. Mao, Y., Zhang, J., Song, S. H., & Letaief, K. B. (2017). Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems. IEEE Transactions on Wireless Communications, 16(9), 5994–6009. https://doi.org/10.1109/TWC.2017.2717986

    Article  Google Scholar 

  26. Neely, M. (2010). Stochastic network optimization with application to communication and queueing systems. Morgan & Claypool

  27. Roth, A. E., & Sotomayor, M. A. O. (1992). Two-Sided Matching: A Study In Game-Theoretic Modeling and Analysis. Cambridge Univ. Press.

    Google Scholar 

  28. Bodine-Baron, E., Lee, C., Chong, A., Hassibi, B., & Wierman, A. (2011). Peer effects and stability in matching markets. In eds, (Ed.), Persiano, G (pp. 117–129). Algorithmic Game Theory. https://doi.org/10.1007/978-3-642-24829-0_12

    Chapter  Google Scholar 

  29. Sun, Y., Zhou, S., & Xu, J. (2017). EMM: Energy-aware mobility management for mobile edge computing in ultra dense networks. IEEE Journal on Selected Areas in Communications, 35(11), 2637–2646. https://doi.org/10.1109/JSAC.2017.2760160

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (61971239, 92067201), Jiangsu Provincial Key Research and Development Program (No. BE2022068-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Zhu, Q. Joint optimization algorithm of offloading decision and resource allocation based on integrated sensing, communication, and computation. Wireless Netw 30, 557–576 (2024). https://doi.org/10.1007/s11276-023-03498-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03498-z

Keywords

Navigation