Skip to main content
Log in

Analytical model considering varying numbers of RA-RUs to determine how to allocate the RA-RUs in practice

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The uplink OFDMA−based random access (UORA) is a key mechanism in the 802.11ax protocol. The advantage of the UORA is that nodes can send their frames quickly without requiring resources from the AP; the disadvantage is that the UORA can be heavily affected by collisions, resulting in low channel efficiency. In this paper, we focus on constructing an analytical model in which the number of random−access RUs (RA−RUs) is taken as a random variable. We investigate how the key parameters, the number of RA−RUs and the allowed maximum transmission times affect the network performance. Based on this, we explore how these two parameters can be set in practice. The comparison results show that our scheme outperforms conventional 802.11ax and previous work in terms of delay and the packet delivery ratio (PDR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. IEEE Standard for Information Technology. (2021).Telecommunications and information exchange between systems local and metropolitan area networks—specific requirements Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 1: Enhancements for high-efficiency WLAN, IEEE standard 802.11ax-2021

  2. Deng, D.-J., et al. (2017). IEEE 802.11ax: Highly efficient WLANs for intelligent information infrastructure. IEEE Communications Magazine, 55(12), 52–59.

    Article  Google Scholar 

  3. Khorov, E., Kiryanov, A., Lyakhov, A., & Bianchi, G. (2019). A tutorial on IEEE 802.11ax high efficiency WLANs. IEEE Communications Surveys & Tutorials, 21(1), 197–216.

    Article  Google Scholar 

  4. Xie, D., Zhang, J., Tang, A., & Wang, X. (2020). Multi-dimensional busy-tone arbitration for OFDMA random access in IEEE 802.11ax. IEEE Transactions on Wireless Communication, 19(6), 4080–4094.

    Article  Google Scholar 

  5. Omar, H. A., Abboud, K., Cheng, N., Malekshan, K. R., Gamage, A. T., & Zhuang, W. (2016). A survey on high efficiency wireless local area networks: Next generation WiFi. IEEE Communications Surveys & Tutorials, 18(4), 2315–2344.

    Article  Google Scholar 

  6. Daldoul, Y., Meddour, D.-E., & Ksentini, A. (2020). Performance evaluation of OFDMA and MU-MIMO in 802.11ax networks. Computer Networks, 182, 107477.

    Article  Google Scholar 

  7. Lanante, L., Uwai, H. O. T., Nagao, Y., Kurosaki, M., & Ghosh, C. (2017). Performance analysis of the 802.11 ax UL OFDMA random access protocol in dense networks. In 2017 IEEE International Conference on Communications (ICC) (pp. 1-6). Paris, France, IEEE

  8. Yang, H., Deng, D. J., & Chen, K. C. (2017). Performance analysis of IEEE 802.11 ax UL OFDMA-based random access mechanism. In GLOBECOM 2017-2017 IEEE Global Communications Conference, (pp. 1–6). Singapore, IEEE

  9. Naik, G., Bhattarai, S., & Park, J. M. (2018). Performance analysis of uplink multi-user OFDMA in IEEE 802.11 ax. In 2018 IEEE International Conference on Communications (ICC) (pp. 1–6). Kansas City, MO, USA, IEEE.

  10. Cheng, R.-G., Yang, C.-M., Firmansyah, B. S., & Harwahyu, R. (2022). Uplink OFDMA-based random access mechanism with bursty arrivals for IEEE 802.11ax systems. IEEE Networking Letters, 4(1), 34–38.

    Article  Google Scholar 

  11. Bankov, D., Didenko, A., Khorov, E., & Lyakhov, A. (2018). OFDMA uplink scheduling in IEEE 802.11 ax networks. In 2018 IEEE International Conference on Communications (ICC), (pp. 1–6). Kansas City, MO, USA, IEEE

  12. Lee, K.-h. (2019). Performance analysis of the IEEE 802.11ax MAC protocol for heterogeneous Wi-Fi networks in non-saturated conditions. Sensors, 19(7), 1540.

    Article  Google Scholar 

  13. Avdotin, E., Bankov, D., Khorov, E., & Lyakhov, A. (2019). Enabling massive real-time applications in IEEE 802.11be networks. In 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), (pp. 1–6)

  14. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas Communications, 18(3), 535–547.

    Article  Google Scholar 

  15. Qu, Q., Li, B., Yang, M., et al. (2019). Survey and performance evaluation of the upcoming next generation WLANs standard-IEEE 802.11 ax. Mobile Networks and Applications, 24(5), 1461–1474.

    Article  Google Scholar 

  16. Wang, J., Wu, M., Chen, Q., Zheng, Y., & Zhu, Y. H. (2019). Probability complementary transmission scheme for uplink OFDMA-based random access in 802.11 ax WLAN. In 2019 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1-7). IEEE

  17. Kim, J., Lee, H., & Bahk, S. (2019). CRUI: Collision reduction and utilization improvement in OFDMA-based 802.11ax networks. In Proceedings IEEE GLOBECOM, (pp. 1–6)

  18. Kosek-Szott, K., & Domino, K. (2022). An efficient backoff procedure for IEEE 802.11ax uplink OFDMA-based random access. IEEE Access, 10, 8855–8863.

    Article  Google Scholar 

  19. Uwai, T., Miyamoto, T., Nagao, Y., Lanante, L., Kurosaki, M., & Ochi, H. (2016). Adaptive backoff mechanism for OFDMA random access with finite service period in IEEE802. 11ax. In 2016 IEEE (CSCN), (pp. 1–6). Berlin, Germany, IEEE

  20. Yang, A., Li, B., Yang, M., et al. (2021). Utility optimization of grouping-based uplink OFDMA random access for the next generation WLANs. Wireless Networks, 27(1), 809–823.

    Article  Google Scholar 

  21. Bai, J., Fang, H., Suh, J., Aboul-Magd, O., Au, E., & Wang, X. (2019). An adaptive grouping scheme in ultra-dense IEEE 802.11ax network using buffer state report based two-stage mechanism. China Communication, 16(9), 31–44.

    Article  Google Scholar 

  22. Lyakhov, A., & Vishnevsky, V. (2003). Optional tools of the Wi-Fi protocol: Study in saturation. In Proceedings International “Workshop Distributed Computer and Communication Networks (Stochastic modelling and optimization)” (DCCN-2003), (pp. 28–44).

  23. Avdotin, E., Bankov, D., Khorov, E., & Lyakhov. A. (2019). Enabling Massive Real-Time Applications in IEEE 802.11be networks. In 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), (pp. 1–6). IEEE

  24. Abate, J., & Whitt, W. (1992). Numerical inversion of probability generating functions. Operations Research Letters, 12(4), 245–251.

    Article  MathSciNet  Google Scholar 

  25. Karagiannis, T., Molle, M., Faloutsos, M. & Broido, A. (2004). A nonstationary Poisson view of internet traffic. In Proceedings IEEE INFOCOM, (pp. 1558–1569). Hong Kong, China

  26. Akbar, I. A., & Tranter, W. H. (2007). Dynamic spectrum allocation in cognitive radio using hidden Markov models: Poisson distributed case. In Proceedings 2007 IEEE SoutheastCon, (pp. 196-201). IEEE

  27. Wang, B., Ji, Z., Liu, K. J. R., & Clancy, T. C. (2009). Primary-prioritized Markov approach for dynamic spectrum allocation. IEEE Transactions on Wireless Communication, 8(4), 1854–1865.

    Article  Google Scholar 

  28. Praveen Kumar, D., Amgoth, T., & Rao Annavarapu, C. S. (2019). Machine learning algorithms for wireless sensor networks: A survey. Information Fusion, 49, 1–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqing Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Pan, G. Analytical model considering varying numbers of RA-RUs to determine how to allocate the RA-RUs in practice. Wireless Netw 30, 253–265 (2024). https://doi.org/10.1007/s11276-023-03474-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03474-7

Keywords

Navigation