Skip to main content

Advertisement

Log in

Design of anonymous authentication scheme for vehicle fog services using blockchain

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

With the advances in smart vehicles and fog computing, Fog computing is extended to traditional Vehicular Ad Hoc Networks (VANETs). As a geographically distributed paradigm, Vehicle Fog Service (VFS) overcomes the limitations of VANETs in real-time response and location awareness. It supports a wide range of traffic information services, such as road warnings, congestion control, and autonomous driving. Secure communication between VFS entities is a critical problem in an open network. Meanwhile, most fog nodes are deployed in the public domain and are vulnerable to physical attacks. This paper proposes a secure authentication scheme for VFS to address the above issues. The scheme combines blockchain and physical unclonable function (PUF) to achieve two-way authentication of on-board units (OBU) and road side units (RSU) with the untrusted fog nodes. Our scheme provides conditional anonymity and non-repudiation, offering recourse in case of malicious behavior. Unlike other schemes, the proposed scheme only needs to determine whether the pseudo-identity has a revocation tag instead of scanning the whole certificate revocation list (CLS), significantly reducing the computational overhead. In addition, we use the Real-Or-Random ROR model and formally prove that the proposed scheme is provably secure, and informal security analysis shows that the scheme is robust to various known attacks. Finally, compared with existing schemes, our scheme maintains lower communication and computation costs and provides more security features, which shows that our scheme is more suitable for secure VFS environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Khan, AA., Abolhasan, M., & Ni, W. (2018). 5G next generation vanets using sdn and fog computing framework. In: 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp 1–6

  2. Tan, H., & Chung, I. (2019). Secure authentication and key management with blockchain in vanets. IEEE Access, 8, 2482–2498.

    Article  Google Scholar 

  3. Chen, L. W., & Chen, H. M. (2020). Driver behavior monitoring and warning with dangerous driving detection based on the internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(11), 7232–7241.

    Article  Google Scholar 

  4. Rathore, M. S., Poongodi, M., Saurabh, P., et al. (2022). A novel trust-based security and privacy model for internet of vehicles using encryption and steganography. Computers and Electrical Engineering, 102, 108205.

    Article  Google Scholar 

  5. Garg, S., Singh, A., Batra, S., et al. (2018). Uav-empowered edge computing environment for cyber-threat detection in smart vehicles. IEEE Network, 32(3), 42–51.

    Article  Google Scholar 

  6. Bojjagani, S., Reddy, Y. P., Anuradha, T., et al. (2022). Secure authentication and key management protocol for deployment of internet of vehicles (iov) concerning intelligent transport systems. IEEE Transactions on Intelligent Transportation Systems, 23(12), 24698–24713.

    Article  Google Scholar 

  7. Chen, B., Wu, L., Kumar, N., et al. (2019). Lightweight searchable public-key encryption with forward privacy over iiot outsourced data. IEEE Transactions on Emerging Topics in Computing, 9(4), 1753–1764.

    Article  Google Scholar 

  8. Aman, M. N., Javaid, U., & Sikdar, B. (2020). A privacy-preserving and scalable authentication protocol for the internet of vehicles. IEEE Internet of Things Journal, 8(2), 1123–1139.

    Article  Google Scholar 

  9. Shojafar, M., Cordeschi, N., & Baccarelli, E. (2019). Energy-efficient adaptive resource management for real-time vehicular cloud services. IEEE Transactions on Cloud Computing, 7(1), 196–209.

    Article  Google Scholar 

  10. Alzubi, J. A., Alzubi, O. A., Singh, A., et al. (2022). Cloud-iiot-based electronic health record privacy-preserving by cnn and blockchain-enabled federated learning. IEEE Transactions on Industrial Informatics, 19(1), 1080–1087.

    Article  Google Scholar 

  11. Zhu, C., Pastor, G., Xiao, Y., et al. (2018). Vehicular fog computing for video crowdsourcing: Applications, feasibility, and challenges. IEEE Communications Magazine, 56(10), 58–63.

    Article  Google Scholar 

  12. Yao, Y., Chang, X., Mišić, J., et al. (2018). Reliable and secure vehicular fog service provision. IEEE Internet of Things Journal, 6(1), 734–743.

    Article  Google Scholar 

  13. Guo, Y., & Guo, Y. (2021). Fogha: An efficient handover authentication for mobile devices in fog computing. Computers & Security, 108, 102358.

    Article  Google Scholar 

  14. Keshari, N., Singh, D., & Maurya, A. K. (2022). A survey on vehicular fog computing: Current state-of-the-art and future directions. Vehicular Communications, 38, 100512.

    Article  Google Scholar 

  15. Hue, TTK., Tuan, NGDND., Braeken, A., & et al. (2022). Effective authentication mechanism for vehicular fog infrastructure. In: 2022 IEEE Ninth International Conference on Communications and Electronics (ICCE), pp 93–98

  16. Lin, J., Yu, W., Zhang, N., et al. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142.

    Article  Google Scholar 

  17. Abbas, S., Talib, M. A., Ahmed, A., et al. (2021). Blockchain-based authentication in internet of vehicles: A survey. Sensors, 21(23), 7927.

    Article  Google Scholar 

  18. Wu, A., Guo, Y., & Guo, Y. (2023). A decentralized lightweight blockchain-based authentication mechanism for internet of vehicles. Peer-to-Peer Networking and Applications, 16, 1340–1353.

    Article  Google Scholar 

  19. Ferrag, M. A., Derdour, M., Mukherjee, M., et al. (2018). Blockchain technologies for the internet of things: Research issues and challenges. IEEE Internet of Things Journal, 6(2), 2188–2204.

    Article  Google Scholar 

  20. Khalique, A., Singh, K., & Sood, S. (2010). Implementation of elliptic curve digital signature algorithm. International Journal of Computer Applications, 2(2), 21–27.

    Article  Google Scholar 

  21. Kaur, K., Garg, S., Kaddoum, G., & et al. (2019). Blockchain-based lightweight authentication mechanism for vehicular fog infrastructure. In: 2019 IEEE International conference on communications workshops (ICC workshops), pp 1–6

  22. Jo, H. J., Kim, I. S., & Lee, D. H. (2017). Reliable cooperative authentication for vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 19(4), 1065–1079.

    Article  Google Scholar 

  23. Hu, W., Hu, Y., Yao, W., et al. (2019). A blockchain-based byzantine consensus algorithm for information authentication of the internet of vehicles. IEEE Access, 7, 139703–139711.

    Article  Google Scholar 

  24. Sharma, R., & Chakraborty, S. (2018). Blockapp: using blockchain for authentication and privacy preservation in iov. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp 1–6

  25. Ma, Z., Zhang, J., Guo, Y., et al. (2020). An efficient decentralized key management mechanism for vanet with blockchain. IEEE Transactions on Vehicular Technology, 69(6), 5836–5849.

    Article  Google Scholar 

  26. Malik, N., Nanda, P., Arora, A., & et al. (2018). Blockchain based secured identity authentication and expeditious revocation framework for vehicular networks. In: 2018 17th IEEE international conference on trust, security and privacy in computing and communications/12th IEEE international conference on big data science and engineering (TrustCom/BigDataSE), pp 674–679

  27. Liu, Y., Wang, Y., & Chang, G. (2017). Efficient privacy-preserving dual authentication and key agreement scheme for secure v2v communications in an iov paradigm. IEEE Transactions on Intelligent Transportation Systems, 18(10), 2740–2749.

    Article  Google Scholar 

  28. Lu, Z., Wang, Q., Qu, G., et al. (2019). A blockchain-based privacy-preserving authentication scheme for vanets. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(12), 2792–2801.

    Article  Google Scholar 

  29. Xu, Z., Liang, W., Li, K. C., et al. (2021). A blockchain-based roadside unit-assisted authentication and key agreement protocol for internet of vehicles. Journal of Parallel and Distributed Computing, 149, 29–39.

    Article  Google Scholar 

  30. Javaid, U., Aman, M. N., & Sikdar, B. (2020). A scalable protocol for driving trust management in internet of vehicles with blockchain. IEEE Internet of Things Journal, 7(12), 11815–11829.

    Article  Google Scholar 

  31. Pappu, R., Recht, B., Taylor, J., et al. (2002). Physical one-way functions. Science, 297(5589), 2026–2030.

    Article  Google Scholar 

  32. Bagga, P., Sutrala, A. K., Das, A. K., et al. (2021). Blockchain-based batch authentication protocol for internet of vehicles. Journal of Systems Architecture, 113, 101877.

    Article  Google Scholar 

  33. Yao, Y., Chang, X., Mišić, J., et al. (2019). Bla: Blockchain-assisted lightweight anonymous authentication for distributed vehicular fog services. IEEE Internet of Things Journal, 6(2), 3775–3784.

    Article  Google Scholar 

  34. Feng, Q., He, D., Zeadally, S., et al. (2019). Bpas: Blockchain-assisted privacy-preserving authentication system for vehicular ad hoc networks. IEEE Transactions on Industrial Informatics, 16(6), 4146–4155.

    Article  Google Scholar 

  35. Bethencourt, J., Sahai, A., & Waters, B. (2007). Ciphertext-policy attribute-based encryption. In: 2007 IEEE symposium on security and privacy (SP’07), pp 321–334

  36. Vangala, A., Bera, B., Saha, S., et al. (2020). Blockchain-enabled certificate-based authentication for vehicle accident detection and notification in intelligent transportation systems. IEEE Sensors Journal, 21(14), 15824–15838.

    Article  Google Scholar 

  37. Underwood, S. (2016). Blockchain beyond bitcoin. Communications of the ACM, 59(11), 15–17.

    Article  Google Scholar 

  38. Kshetri, N. (2017). Can blockchain strengthen the internet of things? IT professional, 19(4), 68–72.

    Article  Google Scholar 

  39. Lin, C., He, D., Huang, X., et al. (2020). Bcppa: A blockchain-based conditional privacy-preserving authentication protocol for vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 22(12), 7408–7420.

    Article  Google Scholar 

  40. Bera, B., Saha, S., Das, A. K., et al. (2020). Blockchain-envisioned secure data delivery and collection scheme for 5g-based iot-enabled internet of drones environment. IEEE Transactions on Vehicular Technology, 69(8), 9097–9111.

    Article  Google Scholar 

  41. Alzubi, J. A. (2021). Blockchain-based lamport merkle digital signature: authentication tool in iot healthcare. Computer Communications, 170, 200–208.

    Article  Google Scholar 

  42. Kim, M., Lee, J., Oh, J., et al. (2022). Blockchain based energy trading scheme for vehicle-to-vehicle using decentralized identifiers. Applied Energy, 322, 119445.

    Article  Google Scholar 

  43. Zheng, Z., Xie, S., Dai, H. N., et al. (2018). Blockchain challenges and opportunities: A survey. International journal of web and grid services, 14(4), 352–375.

    Article  Google Scholar 

  44. He, X., Niu, X., Wang, Y., et al. (2022). A hierarchical blockchain-assisted conditional privacy-preserving authentication scheme for vehicular ad hoc networks. Sensors, 22(6), 2299.

    Article  Google Scholar 

  45. Niranjanamurthy, M., Nithya, B., & Jagannatha, S. (2019). Analysis of blockchain technology: Pros, cons and swot. Cluster Computing, 22(6), 14743–14757.

    Article  Google Scholar 

  46. Zheng, Z., Xie, S., Dai, H. N., et al. (2020). An overview on smart contracts: Challenges, advances and platforms. Future Generation Computer Systems, 105, 475–491.

    Article  Google Scholar 

  47. Aman, M. N., Chua, K. C., & Sikdar, B. (2017). Mutual authentication in iot systems using physical unclonable functions. IEEE Internet of Things Journal, 4(5), 1327–1340.

    Article  Google Scholar 

  48. Sahoo, D. P., Nguyen, P. H., Mukhopadhyay, D., et al. (2015). A case of lightweight puf constructions: Cryptanalysis and machine learning attacks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(8), 1334–1343.

    Article  Google Scholar 

  49. Baturone, I., Prada-Delgado, M. A., & Eiroa, S. (2015). Improved generation of identifiers, secret keys, and random numbers from srams. IEEE Transactions on Information Forensics and Security, 10(12), 2653–2668.

    Article  Google Scholar 

  50. Johnson, D., Menezes, A., & Vanstone, S. (2001). The elliptic curve digital signature algorithm (ecdsa). International Journal of Information Security, 1(1), 36–63.

    Article  Google Scholar 

  51. Jiang, Q., Huang, X., Zhang, N., et al. (2019). Shake to communicate: Secure handshake acceleration-based pairing mechanism for wrist worn devices. IEEE Internet of Things Journal, 6(3), 5618–5630.

    Article  Google Scholar 

  52. Xie, J., Tang, H., Huang, T., et al. (2019). A survey of blockchain technology applied to smart cities: Research issues and challenges. IEEE Communications Surveys & Tutorials, 21(3), 2794–2830.

    Article  Google Scholar 

  53. Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on Information Theory, 29(2), 198–208.

    Article  MathSciNet  Google Scholar 

  54. Canetti, R., & Krawczyk, H. (2001). Analysis of key-exchange protocols and their use for building secure channels. In: International conference on the theory and applications of cryptographic techniques, Springer, pp 453–474

  55. Guo, Y., Zhang, Z., & Guo, Y. (2022). Secfhome: Secure remote authentication in fog-enabled smart home environment. Computer Networks, 207, 108818.

    Article  Google Scholar 

  56. Spreitzer, R., Moonsamy, V., Korak, T., et al. (2017). Systematic classification of side-channel attacks: A case study for mobile devices. IEEE Communications Surveys & Tutorials, 20(1), 465–488.

    Article  Google Scholar 

  57. Guo, Y., Zhang, Z., & Guo, Y. (2021). Anonymous authenticated key agreement and group proof protocol for wearable computing. IEEE Transactions on Mobile Computing, 21(8), 2718–2731.

    Article  Google Scholar 

  58. Abdalla, M., Fouque, P. A., & Pointcheval, D. (2005). Password-based authenticated key exchange in the three-party setting. International workshop on public key cryptography (pp. 65–84). Berlin: Springer.

    Google Scholar 

  59. Guo, Y., Zhang, Z., & Guo, Y. (2020). Fog-centric authenticated key agreement scheme without trusted parties. IEEE Systems Journal, 15(4), 5057–5066.

    Article  Google Scholar 

  60. Chang, C. C., & Le, H. D. (2015). A provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks. IEEE Transactions on Wireless Communications, 15(1), 357–366.

    Article  Google Scholar 

  61. Srinivas, J., Das, A. K., Kumar, N., et al. (2018). Cloud centric authentication for wearable healthcare monitoring system. IEEE Transactions on Dependable and Secure Computing, 17(5), 942–956.

    Article  Google Scholar 

  62. Eddine, M. S., Ferrag, M. A., Friha, O., et al. (2021). Easbf: An efficient authentication scheme over blockchain for fog computing-enabled internet of vehicles. Journal of Information Security and Applications, 59, 102802.

    Article  Google Scholar 

  63. He, D., Zeadally, S., Kumar, N., et al. (2016). Efficient and anonymous mobile user authentication protocol using self-certified public key cryptography for multi-server architectures. IEEE transactions on information forensics and security, 11(9), 2052–2064.

    Article  Google Scholar 

  64. Shao, X., Guo, Y., & Guo, Y. (2022). A puf-based anonymous authentication protocol for wireless medical sensor networks. Wireless Networks, 28(8), 3753–3770.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their constructive comments. This work was supported by the National Natural Science Foundation of China (Grant No.62102453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Guo, Y. & Guo, Y. Design of anonymous authentication scheme for vehicle fog services using blockchain. Wireless Netw 30, 193–207 (2024). https://doi.org/10.1007/s11276-023-03471-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03471-w

Keywords

Navigation