Skip to main content

Advertisement

Log in

Multiuser hybrid precoder design using logarithmic hyperbolic filtering for millimeter wave communication systems

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Hybrid precoding is an emerging solution for millimeter wave massive MIMO system to achieve reduced complexity and enhanced spectral efficiency. Hybrid precoding fully exploits spatial information to achieve high channel gain which reduces excessive path loss. The research presented in this paper is aiming at the design of optimal precoder which is based on Logarithmic hyperbolic cosine cost function with ZA and RZA criterion and has the advantage of reduced RF Chains. The channel state information (CSI) is generated by using random values of angle of arrival (AoA) and angle of departure (AoD) information. This CSI information is crucial to generate the precoding matrices and the row wise elements of the digital precoding matrix are recursively updated by using hyperbolic cosine filtering algorithm. Proposed precoder achieves spectral efficiency of 13 bps/Hz with 20 dB SNR which is comparatively higher than the precoders designed using other state of art methods. The performance is tested by varying base station antennas, mobile station antennas and number of users. The achievable spectral efficiency with variation of antenna elements and users establish the superior performance of the precoder. Thus the design can be suitable for fifth and next generation wireless communication systems when higher data rate is the requirement in millimeter wave band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang, X., Kong, L., et al. (2018). Millimeter wave communication: A comprehensive survey. IEEE Communications Surveys & Tutorials, 20(3), 1616–1653.

    Article  Google Scholar 

  2. Xiao, M., et al. (2017). Millimeter wave communications for future mobile networks. IEEE Journal on Selected Areas in Communications., 35(9), 1909–1935.

    Article  Google Scholar 

  3. Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE access, 1, 335–349.

    Article  Google Scholar 

  4. Zhou, J. (2021). Downlink channel estimation for millimeter wave communication combining low-rank and sparse structure characteristics. Annnal of Telecommun., 76(1), 53–62.

    Article  Google Scholar 

  5. A. Ali, Y. Zhu, and M. Zakarya(2021). A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide crowd flows prediction in fog computing.Multimedia Tools and Applications, 1–33.

  6. Ali, A., Zhu, Y., & Zakarya, M. (2021). Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks. Information sciences, 577, 852–870.

    Article  MathSciNet  Google Scholar 

  7. Ali, A., Zhu, Y., & Zakarya, M. (2022). Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction. Neural networks, 145, 233–247.

    Article  Google Scholar 

  8. Osama, I., Rihan, M., Elhefnawy, M., Eldolil, S., & Malhat, H.A.E.-A. (2022). A review on precoding techniques for mm-wave massive MIMO wireless systems. International Journal of Communication Networks and Information Security, 14(1), 26–36.

    Google Scholar 

  9. G. N. Reddy, C. V Ravikumar, and A. Rajesh (2022). Literature review and research direction towards channel estimation and hybrid pre-coding in mmWave massive MIMO communication systems. Journal of Reliable Intelligent Environments, 1–20.

  10. Liu, X., & Zou, W. (2018). Block-sparse hybrid precoding and limited feedback for millimeter wave massive MIMO systems. Physical Communication, 26, 81–86.

    Article  Google Scholar 

  11. Sahoo, S., Sahoo, H. K., & Nanda, S. (2022). Energy efficient equalizer design for MIMO OFDM communication systems using improved split complex extreme learning machine. Signal, Image Video Processing, 16(2), 349–357.

    Article  Google Scholar 

  12. Sarkar, M., Sahoo, S., & Nanda, S. (2022). Channel estimation of non-orthogonal multiple access systems based on L2-norm extreme learning machine. Signal, Image Video Processing, 16(4), 921–929.

    Article  Google Scholar 

  13. El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transaction on Wireless Communication, 13(3), 1499–1513.

    Article  Google Scholar 

  14. Ni, W., & Dong, X. (2015). Hybrid block diagonalization for massive multiuser MIMO systems. IEEE Transaction on Wireless Communication, 64(1), 201–211.

    Article  Google Scholar 

  15. Spencer, Q. H., Swindlehurst, A. L., & Haardt, M. (2004). Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Transaction on signal Processing, 52(2), 461–471.

    Article  MathSciNet  Google Scholar 

  16. Nguyen, D. H. N., Le, L. B., Le-Ngoc, T., & Heath, R. W. (2017). Hybrid MMSE precoding and combining designs for mmWave multiuser systems. IEEE Access, 5, 19167–19181.

    Article  Google Scholar 

  17. Jian, R., Chen, Y., Liu, Z., & Xia, Y. (2020). Hybrid precoding for multiuser massive MIMO systems based on MMSE-PSO. Wireless Networks, 26, 1291–1299.

    Article  Google Scholar 

  18. Liu, F., Kan, X., Bai, X., Du, R., Liu, H., & Zhang, Y. (2020). Hybrid precoding based on adaptive RF-chain-to-antenna connection for millimeter wave MIMO systems. Physical Communication, 39, 100997.

    Article  Google Scholar 

  19. Yu, X., Shen, J.-C., Zhang, J., & Letaief, K. B. (2016). Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 485–500.

    Article  Google Scholar 

  20. Wang, S., Li, L., Ruby, R., & Li, P. (2020). A general hybrid precoding scheme for millimeter wave massive MIMO systems. Wireless Networks, 26, 1331–1345.

    Article  Google Scholar 

  21. Ahn, Y., Kim, T., & Lee, C. (2017). A beam steering based hybrid precoding for MU-MIMO mmWave systems. IEEE Communication Letter, 21, 2726–2729.

    Article  Google Scholar 

  22. Alkhateeb, A., Leus, G., & Heath, R. W. (2015). Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Transaction on Wireless Communication., 14, 6481–6494.

    Article  Google Scholar 

  23. Zhao, L., Ng, D. W. K., & Yuan, J. (2017). Multi-user precoding and channel estimation for hybrid millimeter wave systems. IEEE Journal on Selected areas Communication., 35(7), 1576–1590.

    Article  Google Scholar 

  24. Hu, C., Liu, J., Liao, X., Liu, Y., & Wang, J. (2017). A novel equivalent baseband channel of hybrid beamforming in massive multiuser MIMO systems. IEEE Communication letter, 22(4), 764–767.

    Article  Google Scholar 

  25. Vizziello, A., Savazzi, P., & Chowdhury, K. R. (2018). A Kalman based hybrid precoding for multi-user millimeter wave MIMO systems. IEEE Access, 6, 55712–55722.

    Article  Google Scholar 

  26. Elbir, A. M., & Papazafeiropoulos, A. K. (2020). Hybrid precoding for multiuser millimeter wave massive MIMO systems: A deep learning approach. IEEE Transaction on Vehicular Technology, 69(1), 552–563.

    Article  Google Scholar 

  27. M. Alouzi, F. Al-Kamali, C. D’amours, and F. Chan (2023). Direct Conversion of Hybrid Precoding and Combining from Full Array Architecture to Subarray Architecture for mmWave MIMO Systems. IEEE Access.

  28. Huang, S., Ye, Y., & Xiao, M. (2021). Learning based hybrid beamforming design for full-duplex millimeter wave systems. IEEE Transactions on Cognitive Communications and Networking, 7(1), 120–132.

    Article  Google Scholar 

  29. Huang, H., Song, Y., Yang, J., Gui, G., & Adachi, F. (2019). Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Transactions on Vehicular Technology, 68(3), 3027–3032.

    Article  Google Scholar 

  30. B. Q. Vuong, H. T. Huynh, and H. N. Do, (2018). Monte-carlo performance analysis of OFDM system in the presence of multi-path fading environment and non-Gaussian noise. in 2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications \& Computing (SigTelCom), 230–235.

  31. Mulla, M., Rizaner, A., & Ulusoy, A. H. (2022). Fuzzy logic based decoder for single-user millimeter wave systems under impulsive noise. Wireless Personal Communication, 124(2), 1883–1895.

    Article  Google Scholar 

  32. Kumar, K., Bhattacharjee, S. S., & George, N. V. (2020). Joint logarithmic hyperbolic cosine robust sparse adaptive algorithms. IEEE Transaction Circuits System II Express Briefs, 68(1), 526–530.

    Google Scholar 

  33. Li, M., Liu, W., Tian, X., Wang, Z., & Liu, Q. (2019). Iterative hybrid precoder and combiner design for mmWave MIMO-OFDM systems. Wireless Networks, 25, 4829–4837.

    Article  Google Scholar 

  34. D. H. N. Nguyen, L. B. Le, and T. Le-Ngoc, (2016). Hybrid MMSE precoding for mmWave multiuser MIMO systems. In 2016 IEEE international conference on communications (ICC), 1–6.

  35. L.-F. Lin, W.-H. Chung, H.-J. Chen, and T.-S. Lee. Energy efficient hybrid precoding for multi-user massive MIMO systems using low-resolution ADCs. In 2016 IEEE International Workshop on Signal Processing Systems (SiPS), 115–120.

  36. Wang, J., et al. (2009). Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE Journal Selection Areas Commun., 27(8), 1390–1399.

    Article  Google Scholar 

  37. Hur, S., Kim, T., Love, D. J., Krogmeier, J. V., Thomas, T. A., & Ghosh, A. (2013). Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Transactions on Communication, 61(10), 4391–4403.

    Article  Google Scholar 

  38. Liu, C., & Jiang, M. (2020). Robust adaptive filter with lncosh cost. Signal Processing, 168, 107348.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support from KIIT Bhubaneswar and VSSUT Burla in terms of journals and laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarita Nanda.

Ethics declarations

Conflict of interest

The authors claim that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Sarkar, M., Sahoo, H.K. et al. Multiuser hybrid precoder design using logarithmic hyperbolic filtering for millimeter wave communication systems. Wireless Netw 30, 139–150 (2024). https://doi.org/10.1007/s11276-023-03465-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03465-8

Keywords

Navigation