Skip to main content

Advertisement

Log in

The optimization of nodes clustering and multi-hop routing protocol using hierarchical chimp optimization for sustainable energy efficient underwater wireless sensor networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The design of underwater wireless sensor networks (UWSNs) faces many challenges, including power consumption, storage, battery life, and transmission bandwidth. UWSNs usually either use node clustering or multi-hop routing as their energy-efficient optimization algorithms. The cluster optimization technique will organize the sensor nodes into a cluster network, with each cluster led by a cluster head (CH). In contrast, the multi-hop optimization algorithm will create a multi-hop network by sending data to the base station (BS) while switching between different sensor nodes. However, the overburdens of CH nodes impact the performance of the cluster optimization method, whereas the overburdens of nodes close to the BS impact the performance of the multi-hop optimization algorithm. Therefore, clustering and routing procedures can be considered as a simultaneous NP-hard problem that metaheuristic algorithms can address. With this motivation, this paper proposes an energy-efficient clustering and multi-hop routing protocol using the metaheuristic-based algorithm to increase energy efficiency in UWSNs and lengthen the network life. However, the existing metaheuristic-based methods use two separate algorithms for clustering and multi-hop routing, increasing computational complexity, different initialization, and difficulty in hyperparameters’ tuning. In order to address the mentioned shortcomings, this paper proposes a novel hierarchical structure called hierarchical chimp optimization (HChOA) for both clustering and multi-hop routing processes. The proposed HChOA is validated using various metrics after being simulated using an extended set of experiments. Results are compared to those from LEACH, TEEN, MPSO, PSO, and IPSO-GWO to validate the impact of the HChOA. According to the findings, the HChOA performed better than other lifespan and energy usage benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Cheng, H., Shojafar, M., Alazab, M., Tafazolli, R., & Liu, Y. (2021). PPVF: Privacy-preserving protocol for vehicle feedback in cloud-assisted VANET. IEEE Transactions on Intelligent Transportation Systems, 23(7), 9391–9403.

    Article  Google Scholar 

  2. Cheng, B., Zhu, D., Zhao, S., & Chen, J. (2016). Situation-aware IoT service coordination using the event-driven SOA paradigm. IEEE Transactions on Network and Service Management, 13(2), 349–361.

    Article  Google Scholar 

  3. Jiang, Y., & Li, X. (2022). Broadband cancellation method in an adaptive co-site interference cancellation system. International Journal of Electronics, 109(5), 854–874.

    Article  Google Scholar 

  4. Yin, L., Wang, L., Keim, B. D., Konsoer, K., & Zheng, W. (2022). Wavelet analysis of dam injection and discharge in three gorges dam and reservoir with precipitation and river discharge. Water, 14(4), 567.

    Article  Google Scholar 

  5. Jiang, S., Zhao, C., Zhu, Y., Wang, C., & Du, Y. (2022). A practical and economical ultra-wideband base station placement approach for indoor autonomous driving systems. Journal of Advanced Transportation. https://doi.org/10.1155/2022/3815306

    Article  Google Scholar 

  6. Wang, K., Zhang, B., Alenezi, F., & Li, S. (2022). Communication-efficient surrogate quantile regression for non-randomly distributed system. Information Sciences, 588, 425–441.

    Article  Google Scholar 

  7. Zong, C., & Wang, H. (2022). An improved 3D point cloud instance segmentation method for overhead catenary height detection. Computers & Electrical Engineering, 98, 107685.

    Article  Google Scholar 

  8. Ren, Y., Jiang, H., Ji, N., & Yu, H. (2022). TBSM: A traffic burst-sensitive model for short-term prediction under special events. Knowledge-Based Systems, 240, 108120.

    Article  Google Scholar 

  9. Yan, L., Yin-He, S., Qian, Y., Zhi-Yu, S., Chun-Zi, W., & Zi-Yun, L. (2021). Method of reaching consensus on probability of food safety based on the integration of finite credible data on block chain. IEEE Access, 9, 123764–123776.

    Article  Google Scholar 

  10. Lv, Z., Chen, D., Feng, H., Zhu, H., & Lv, H. (2021). Digital twins in unmanned aerial vehicles for rapid medical resource delivery in epidemics. IEEE Transactions on Intelligent Transportation Systems, 23(12), 25106–25114.

    Article  Google Scholar 

  11. Chen, H., & Wang, Q. (2021). Regulatory mechanisms of lipid biosynthesis in microalgae. Biological Reviews, 96(5), 2373–2391.

    Article  Google Scholar 

  12. Li, D., Ge, S. S., & Lee, T. H. (2020). Fixed-time-synchronized consensus control of multiagent systems. IEEE Transactions on Control of Network Systems, 8(1), 89–98.

    Article  MathSciNet  Google Scholar 

  13. Zhou, G., et al. (2021). An innovative echo detection system with STM32 gated and PMT adjustable gain for airborne LiDAR. International Journal of Remote Sensing, 42(24), 9187–9211.

    Article  Google Scholar 

  14. Zhou, G., et al. (2021). Gaussian inflection point selection for LiDAR hidden echo signal decomposition. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.

    Google Scholar 

  15. Zenggang, X., et al. (2022). Social similarity routing algorithm based on socially aware networks in the big data environment. Journal of Signal Processing Systems, 94(11), 1–15.

    Article  Google Scholar 

  16. Xiong, Z., et al. (2023). A comprehensive confirmation-based selfish node detection algorithm for socially aware networks. Journal of Signal Processing Systems. https://doi.org/10.1007/s11265-023-01868-6

    Article  Google Scholar 

  17. Chen, H., Miao, Y., Chen, Y., Fang, L., Zeng, L., & Shi, J. (2021). Intelligent model-based integrity assessment of nonstationary mechanical system. Journal of Web Engineering, 20(2), 253–280.

    Google Scholar 

  18. Li, L., Wang, P., Zheng, X., Xie, Q., Tao, X., & Velásquez, J. D. (2023). Dual-interactive fusion for code-mixed deep representation learning in tag recommendation. Information Fusion, 99, 101862.

    Article  Google Scholar 

  19. Xie, X., Huang, L., Marson, S. M., & Wei, G. (2023). Emergency response process for sudden rainstorm and flooding: Scenario deduction and Bayesian network analysis using evidence theory and knowledge meta-theory. Natural Hazards. https://doi.org/10.1007/s11069-023-05988-x

    Article  Google Scholar 

  20. Xie, X., Tian, Y., & Wei, G. (2023). Deduction of sudden rainstorm scenarios: Integrating decision makers’ emotions, dynamic Bayesian network and DS evidence theory. Natural Hazards, 116(3), 2935–2955.

    Article  Google Scholar 

  21. Wu, Z., Cao, J., Wang, Y., Wang, Y., Zhang, L., & Wu, J. (2018). hPSD: A hybrid PU-learning-based spammer detection model for product reviews. IEEE Transactions on Cybernetics, 50(4), 1595–1606.

    Article  Google Scholar 

  22. Zheng, W., Liu, X., & Yin, L. (2021). Research on image classification method based on improved multi-scale relational network. PeerJ Computer Science, 7, e613.

    Article  Google Scholar 

  23. Lv, Z., Chen, D., Feng, H., Wei, W., & Lv, H. (2022). Artificial intelligence in underwater digital twins sensor networks. ACM Transactions on Sensor Networks, 18(3), 1–27.

    Article  Google Scholar 

  24. Nguyen, N.-T., Le, T. T. T., Nguyen, H.-H., & Voznak, M. (2021). Energy-efficient clustering multi-hop routing protocol in a UWSN. Sensors, 21(2), 627.

    Article  Google Scholar 

  25. Cao, B., Zhao, J., Gu, Y., Fan, S., & Yang, P. (2019). Security-aware industrial wireless sensor network deployment optimization. IEEE Transactions on Industrial Informatics, 16(8), 5309–5316.

    Article  Google Scholar 

  26. Cao, B., et al. (2019). Multiobjective 3-D topology optimization of next-generation wireless data center network. IEEE Transactions on Industrial Informatics, 16(5), 3597–3605.

    Article  Google Scholar 

  27. Wang, X., & Lyu, X. (2021). Experimental study on vertical water entry of twin spheres side-by-side. Ocean Engineering, 221, 108508.

    Article  Google Scholar 

  28. Mou, J., Duan, P., Gao, L., Liu, X., & Li, J. (2022). An effective hybrid collaborative algorithm for energy-efficient distributed permutation flow-shop inverse scheduling. Future Generation Computer Systems, 128, 521–537.

    Article  Google Scholar 

  29. Yao, Y., Zhao, J., Li, Z., Cheng, X., & Wu, L. (2023). Jamming and eavesdropping defense scheme based on deep reinforcement learning in autonomous vehicle networks. IEEE Transactions on Information Forensics and Security, 18, 1211–1224.

    Article  Google Scholar 

  30. Liu, G. (2023). A Q-learning-based distributed routing protocol for frequency-switchable magnetic induction-based wireless underground sensor networks. Future Generation Computer Systems, 139, 253–266.

    Article  Google Scholar 

  31. Xia, Y., Ding, L., & Tang, Z. (2023). Interaction effects of multiple input parameters on the integrity of safety instrumented systems with the k-out-of-n redundancy arrangement under uncertainties. Quality and Reliability Engineering International. https://doi.org/10.1002/qre.3359

    Article  Google Scholar 

  32. She, Q., Hu, R., Xu, J., Liu, M., Xu, K., & Huang, H. (2022). Learning high-DOF reaching-and-grasping via dynamic representation of gripper-object interaction. arXiv Prepr. arXiv2204.13998

  33. Xiao, Z., et al. (2021). Understanding private car aggregation effect via spatio-temporal analysis of trajectory data. IEEE Transactions on Cybernetics, 53(4), 2346–2357. https://doi.org/10.1109/TCYB.2021.3117705

    Article  Google Scholar 

  34. Jiang, H., Wang, M., Zhao, P., Xiao, Z., & Dustdar, S. (2021). A utility-aware general framework with quantifiable privacy preservation for destination prediction in LBSs. IEEE/ACM Transactions on Networking, 29(5), 2228–2241.

    Article  Google Scholar 

  35. Cao, K., et al. (2020). Improving physical layer security of uplink NOMA via energy harvesting jammers. IEEE Transactions on Information Forensics and Security, 16, 786–799.

    Article  Google Scholar 

  36. Cao, K., et al. (2021). Achieving reliable and secure communications in wireless-powered NOMA systems. IEEE Transactions on Vehicular Technology, 70(2), 1978–1983.

    Article  Google Scholar 

  37. Ma, K., et al. (2021). Reliability-constrained throughput optimization of industrial wireless sensor networks with energy harvesting relay. IEEE Internet of Things Journal, 8(17), 13343–13354.

    Article  Google Scholar 

  38. Chen, D., Li, Y., Li, X., Hong, X., Fan, X., & Savidge, T. (2022). Key difference between transition state stabilization and ground state destabilization: Increasing atomic charge densities before or during enzyme–substrate binding. Chemical Science, 13(27), 8193–8202.

    Article  Google Scholar 

  39. Yang, D., Zhu, T., Wang, S., Wang, S., & Xiong, Z. (2022). LFRSNet: A robust light field semantic segmentation network combining contextual and geometric features. Frontiers in Environmental Science, 10, 1443. https://doi.org/10.3389/fenvs.2022.996513

    Article  Google Scholar 

  40. Dai, B., Zhang, B., Niu, Z., Feng, Y., Liu, Y., & Fan, Y. (2022). A novel ultrawideband branch waveguide coupler with low amplitude imbalance. IEEE Transactions on Microwave Theory and Techniques, 70(8), 3838–3846.

    Article  Google Scholar 

  41. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., & Guibas, L. (2017). Grass: Generative recursive autoencoders for shape structures. ACM Transactions on Graphics, 36(4), 1–14.

    Google Scholar 

  42. Zhang, L., Zheng, H., Cai, G., Zhang, Z., Wang, X., & Koh, L. H. (2022). Power-frequency oscillation suppression algorithm for AC microgrid with multiple virtual synchronous generators based on fuzzy inference system. IET Renewable Power Generation, 16(8), 1589–1601.

    Article  Google Scholar 

  43. Mohajer, A., Sorouri, F., Mirzaei, A., Ziaeddini, A., Rad, K. J., & Bavaghar, M. (2022). Energy-aware hierarchical resource management and Backhaul traffic optimization in heterogeneous cellular networks. IEEE Systems Journal, 16(4), 5188–5199.

    Article  Google Scholar 

  44. Nikjoo, F., Mirzaei, A., & Mohajer, A. (2018). A novel approach to efficient resource allocation in NOMA heterogeneous networks: Multi-criteria green resource management. Applied Artificial Intelligence, 32(7–8), 583–612.

    Article  Google Scholar 

  45. Ma, Z., Zheng, W., Chen, X., & Yin, L. (2021). Joint embedding VQA model based on dynamic word vector. PeerJ Computer Science, 7, e353.

    Article  Google Scholar 

  46. Mohajer, A., Daliri, M. S., Mirzaei, A., Ziaeddini, A., Nabipour, M., & Bavaghar, M. (2022). Heterogeneous computational resource allocation for NOMA: Toward green mobile edge-computing systems. IEEE Transactions on Services Computing, 16(2), 1225–1238.

    Article  Google Scholar 

  47. Li, B., Zhang, M., Rong, Y., & Han, Z. (2021). Transceiver optimization for wireless powered time-division duplex MU-MIMO systems: Non-robust and robust designs. IEEE Transactions on Wireless Communications, 21(6), 4594–4607.

    Article  Google Scholar 

  48. Cheng, L., Yin, F., Theodoridis, S., Chatzis, S., & Chang, T.-H. (2022). Rethinking Bayesian learning for data analysis: The art of prior and inference in sparsity-aware modeling. IEEE Signal Processing Magazine, 39(6), 18–52.

    Article  Google Scholar 

  49. Zhou, G., Zhang, R., & Huang, S. (2021). Generalized buffering algorithm. IEEE Access, 9, 27140–27157.

    Article  Google Scholar 

  50. Li, B., Li, Q., Zeng, Y., Rong, Y., & Zhang, R. (2021). 3D trajectory optimization for energy-efficient UAV communication: A control design perspective. IEEE Transactions on Wireless Communications, 21(6), 4579–4593.

    Article  Google Scholar 

  51. Palan, N. G., Barbadekar, B. V., & Patil, S. (2017). Low energy adaptive clustering hierarchy (LEACH) protocol: A retrospective analysis. In 2017 International conference on inventive systems and control (ICISC), IEEE, pp. 1–12.

  52. Sandeep, D. N., & Kumar, V. (2017). Review on clustering, coverage and connectivity in underwater wireless sensor networks: A communication techniques perspective. IEEE Access, 5, 11176–11199.

    Article  Google Scholar 

  53. Zhu, F., & Wei, J. (2018). An energy efficient routing protocol based on layers and unequal clusters in underwater wireless sensor networks. Journal of Sensors, 2018, 1–10.

    Article  Google Scholar 

  54. Muruganathan, S. D., Ma, D. C. F., Bhasin, R. I., & Fapojuwo, A. O. (2005). A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Communications Magazine, 43(3), S8-13.

    Article  Google Scholar 

  55. Durrani, M. Y., Tariq, R., Aadil, F., Maqsood, M., Nam, Y., & Muhammad, K. (2019). Adaptive node clustering technique for smart ocean under water sensor network (SOSNET). Sensors, 19(5), 1145.

    Article  Google Scholar 

  56. Khan, W., Wang, H., Anwar, M. S., Ayaz, M., Ahmad, S., & Ullah, I. (2019). A multi-layer cluster based energy efficient routing scheme for UWSNs. IEEE Access, 7, 77398–77410.

    Article  Google Scholar 

  57. Hong, Z., Pan, X., Chen, P., Su, X., Wang, N., & Lu, W. (2018). A topology control with energy balance in underwater wireless sensor networks for IoT-based application. Sensors, 18(7), 2306.

    Article  Google Scholar 

  58. Yu, W., Chen, Y., Wan, L., Zhang, X., Zhu, P., & Xu, X. (2020). An energy optimization clustering scheme for multi-hop underwater acoustic cooperative sensor networks. IEEE Access, 8, 89171–89184.

    Article  Google Scholar 

  59. Hou, R., He, L., Hu, S., & Luo, J. (2018). Energy-balanced unequal layering clustering in underwater acoustic sensor networks. IEEE Access, 6, 39685–39691.

    Article  Google Scholar 

  60. Baranidharan, V., Sivaradje, G., Varadharajan, K., & Vignesh, S. (2020). Clustered geographic-opportunistic routing protocol for underwater wireless sensor networks. Journal of Applied Research and Technology, 18(2), 62–68.

    Google Scholar 

  61. Alqahtani, G. J., & Bouabdallah, F. (2021). Energy-efficient mobility prediction routing protocol for freely floating underwater acoustic sensor networks. Frontiers in Communications and Networks, 2, 692002.

    Article  Google Scholar 

  62. Mao, Y., Zhu, Y., Tang, Z., & Chen, Z. (2022). A novel airspace planning algorithm for cooperative target localization. Electronics, 11(18), 2950.

    Article  Google Scholar 

  63. Ahmadi, M., & Jameii, S. M. (2018). A secure routing algorithm for underwater wireless sensor networks. International Journal of Engineering, 31(10), 1659–1665.

    Google Scholar 

  64. Persis, D. J. (2019). A Bi-objective routing model for underwater wireless sensor network. In Proceedings of the 2019 3rd international conference on intelligent systems, metaheuristics & swarm intelligence, pp. 78–82.

  65. Islam, T., & Park, S.-H. (2020). A two-stage routing protocol for partitioned underwater wireless sensor networks. Symmetry (Basel), 12(5), 783.

    Article  Google Scholar 

  66. Morsy, N. A., AbdelHay, E. H., & Kishk, S. S. (2018). Proposed energy efficient algorithm for clustering and routing in WSN. Wireless Personal Communications, 103(3), 2575–2598.

    Article  Google Scholar 

  67. Lalwani, P., Das, S., Banka, H., & Kumar, C. (2018). CRHS: Clustering and routing in wireless sensor networks using harmony search algorithm. Neural Computing and Applications, 30(2), 639–659.

    Article  Google Scholar 

  68. Lalwani, P., Banka, H., & Kumar, C. (2018). BERA: A biogeography-based energy saving routing architecture for wireless sensor networks. Soft Computing, 22(5), 1651–1667.

    Article  Google Scholar 

  69. Lalwani, P., Banka, H., & Kumar, C. (2017). CRWO: Clustering and routing in wireless sensor networks using optics inspired optimization. Peer-to-Peer Networking and Applications, 10(3), 453–471.

    Article  Google Scholar 

  70. Mekonnen, M. T., & Rao, K. N. (2017). Cluster optimization based on metaheuristic algorithms in wireless sensor networks. Wireless Personal Communications, 97(2), 2633–2647.

    Article  Google Scholar 

  71. Ezhilarasi, M., & Krishnaveni, V. (2019). An evolutionary multipath energy-efficient routing protocol (EMEER) for network lifetime enhancement in wireless sensor networks. Soft Computing, 23(18), 8367–8377.

    Article  Google Scholar 

  72. Yogarajan, G., & Revathi, T. (2018). Improved cluster based data gathering using ant lion optimization in wireless sensor networks. Wireless Personal Communications, 98(3), 2711–2731.

    Article  Google Scholar 

  73. Gao, F., Luo, W., & Ma, X. (2019). Energy constrained clustering routing method based on particle swarm optimization. Cluster Computing, 22(3), 7629–7635.

    Article  Google Scholar 

  74. Sirdeshpande, N., & Udupi, V. (2017). Fractional lion optimization for cluster head-based routing protocol in wireless sensor network. Journal of the Franklin Institute, 354(11), 4457–4480.

    Article  MathSciNet  Google Scholar 

  75. Elhoseny, M., Rajan, R. S., Hammoudeh, M., Shankar, K., & Aldabbas, O. (2020). Swarm intelligence–based energy efficient clustering with multihop routing protocol for sustainable wireless sensor networks. International Journal of Distributed Sensor Networks, 16(9), 1550147720949133.

    Article  Google Scholar 

  76. Zhang, X., Wang, Y., Yang, M., & Geng, G. (2021). Toward concurrent video multicast orchestration for caching-assisted mobile networks. IEEE Transactions on Vehicular Technology, 70(12), 13205–13220.

    Article  Google Scholar 

  77. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  78. Saffari, A., Khishe, M., & Zahiri, S.-H. (2022). “Fuzzy-ChOA: An improved chimp optimization algorithm for marine mammal classification using artificial neural network. Analog Integrated Circuits and Signal Processing, 111(3), 1–15. https://doi.org/10.1007/s10470-022-02014-1

    Article  Google Scholar 

  79. Saffari, A., Zahiri, S. H., Khishe, M., & Mosavi, S. M. (2020). Design of a fuzzy model of control parameters of chimp algorithm optimization for automatic sonar targets recognition. Iranian Journal of Marine Technology, 9(1), 1–14.

    Google Scholar 

  80. Khishe, M., & Mosavi, M. R. (2020). Classification of underwater acoustical dataset using neural network trained by chimp optimization algorithm. Applied Acoustics. https://doi.org/10.1016/j.apacoust.2019.107005

    Article  Google Scholar 

  81. Hu, T., Khishe, M., Mohammadi, M., Parvizi, G. R., Taher Karim, S. H., & Rashid, T. A. (2021). Real-time COVID-19 diagnosis from X-Ray images using deep CNN and extreme learning machines stabilized by chimp optimization algorithm. Biomedical Signal Processing and Control, 68, 102764. https://doi.org/10.1016/j.bspc.2021.102764

    Article  Google Scholar 

  82. Houssein, E. H., Emam, M. M., & Ali, A. A. (2021). An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm. Expert Systems with Applications, 185, 115651. https://doi.org/10.1016/j.eswa.2021.115651

    Article  Google Scholar 

  83. Wang, J., Khishe, M., Kaveh, M., & Mohammadi, H. (2021). Binary chimp optimization algorithm (BChOA): A new binary meta-heuristic for solving optimization problems. Cognitive Computation, 13(5), 1297–1316.

    Article  Google Scholar 

  84. Gong, S.-P., Khishe, M., & Mohammadi, M. (2022). Niching chimp optimization for constraint multimodal engineering optimization problems. Expert Systems with Applications, 198, 116887.

    Article  Google Scholar 

  85. Jabbar N. M. A., & Mitras, B. A. (2021). Modified chimp optimization algorithm based on classical conjugate gradient methods. In Journal of Physics: Conference Series, IOP Publishing, pp. 12027.

  86. Liu, L., Khishe, M., Mohammadi, M., & Mohammed, A. H. (2022). Optimization of constraint engineering problems using robust universal learning chimp optimization. Advanced Engineering Informatics, 53, 101636.

    Article  Google Scholar 

  87. Jia, H., Sun, K., Zhang, W., & Leng, X. (2021). An enhanced chimp optimization algorithm for continuous optimization domains. Complex & Intelligent Systems, 8, 1–18. https://doi.org/10.1007/s40747-021-00346-5

    Article  Google Scholar 

  88. Khishe, M., Nezhadshahbodaghi, M., Mosavi, M. R., & Martín, D. (2021). A weighted chimp optimization algorithm. IEEE Access, 9, 158508–158539.

    Article  Google Scholar 

  89. Kaidi, W., Khishe, M., & Mohammadi, M. (2021). Dynamic levy flight chimp optimization. Knowledge-Based Systems, 235, 107625.

    Article  Google Scholar 

  90. Chen, F., Yang, C., & Khishe, M. (2022). Diagnose Parkinson’s disease and cleft lip and palate using deep convolutional neural networks evolved by IP-based chimp optimization algorithm. Biomedical Signal Processing and Control, 77, 103688.

    Article  Google Scholar 

  91. Bo, Q., Cheng, W., Khishe, M., Mohammadi, M., & Mohammed, A. H. (2022). Solar photovoltaic model parameter identification using robust niching chimp optimization. Solar Energy, 239, 179–197.

    Article  Google Scholar 

  92. Wu, J., Khishe, M., Mohammadi, M., Karim, S. H. T., & Shams, M. (2021). Acoustic detection and recognition of dolphins using swarm intelligence neural networks. Applied Ocean Research, 115, 102837.

    Article  Google Scholar 

  93. Khishe, M., & Mosavi, M. R. (2020). Chimp optimization algorithm. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2020.113338

    Article  Google Scholar 

  94. Liu, G. (2021). Data collection in mi-assisted wireless powered underground sensor networks: Directions, recent advances, and challenges. IEEE Communications Magazine, 59(4), 132–138.

    Article  Google Scholar 

  95. Meng, F., Xiao, X., & Wang, J. (2022). Rating the crisis of online public opinion using a multi-level index system. arXiv Prepr. arXiv2207.14740

  96. Cao, B., et al. (2021). Large-scale many-objective deployment optimization of edge servers. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3841–3849.

    Article  Google Scholar 

  97. Wang, S., Sheng, H., Yang, D., Zhang, Y., Wu, Y., & Wang, S. (2022). Extendable multiple nodes recurrent tracking framework with RTU++. IEEE Transactions on Image Processing, 31, 5257–5271.

    Article  Google Scholar 

  98. Xiangning, F., & Yulin, S. (2007). Improvement on LEACH protocol of wireless sensor network. In 2007 International conference on sensor technologies and applications (SENSORCOMM 2007), IEEE, pp. 260–264.

  99. Manjeshwar, A., & Agrawal, D. P. (2001). TEEN: ARouting protocol for enhanced efficiency in wireless sensor networks. Ipdps, 1, 189.

    Google Scholar 

  100. Wu, X., Lei, S., Jin, W., Cho, J., & Lee, S. (2006) Energy-efficient deployment of mobile sensor networks by PSO. In Asia-Pacific Web Conference, Springer, pp. 373–382.

  101. Wang, H., Gao, Q., Li, H., Wang, H., Yan, L., & Liu, G. (2022). A structural evolution-based anomaly detection method for generalized evolving social networks. The Computer Journal, 65(5), 1189–1199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Khishe or Amin Salih Mohammed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Li, Q., Khishe, M. et al. The optimization of nodes clustering and multi-hop routing protocol using hierarchical chimp optimization for sustainable energy efficient underwater wireless sensor networks. Wireless Netw 30, 233–252 (2024). https://doi.org/10.1007/s11276-023-03464-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03464-9

Keywords

Navigation