Skip to main content
Log in

Long-short term memory based wideband beam tracking scheme for massive mimo systems

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Massive multiple-input multiple-output (MIMO) systems at millimeter wave have been touted as a possible technology for 5 G wireless communications. The massive MIMO systems, gathering channel information using a beam tracking approach is crucial for tracking user movement. Conventional beam tracking algorithms for narrowband systems using the classic hybrid precoding framework suffers from the beam split effect and hence cannot be effectively adapted to wideband massive MIMO systems. To address this problem, we describe a long-short term memory (LSTM) network for detecting user movement and calibrating beam direction based on received signals from earlier beam training to improve noise resilience. Simulation findings demonstrate that the proposed approach may reach near-optimal achievable sum-rate performance with little beam training overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data sharing not applicable to this article as no data sets were generated during the current study.

References

  1. Gao, X., Dai, L., Chen, Z., Wang, Z., & Zhang, Z. (2016). Near-optimal beam selection for beamspace mmwave massive mimo systems. IEEE Communications Letters, 20(5), 1054–1057.

    Article  Google Scholar 

  2. Tan, J., & Dai, L. (2021). Wideband beam tracking in thz massive mimo systems. IEEE Journal on Selected Areas in Communications, 39(6), 1693–1710.

    Article  Google Scholar 

  3. Liu, X., & Qiao, D. (2018). Space-time block coding-based beamforming for beam squint compensation. IEEE Wireless Communications Letters, 8(1), 241–244.

    Article  Google Scholar 

  4. Jeyakumar, P., Ramesh, A., Srinitha, S., Vishnu, V., & Muthuchidambaranathan, P. (2022). Wideband hybrid precoding techniques for thz massive mimo in 6g indoor network deployment. Telecommunication Systems. 1–12

  5. Ali, A., González-Prelcic, N., & Heath, R. W. (2017). Millimeter wave beam-selection using out-of-band spatial information. IEEE Transactions on Wireless Communications, 17(2), 1038–1052.

    Article  Google Scholar 

  6. Ma, K., He, D., Sun, H., Wang, Z., & Chen, S. (2021). Deep learning assisted calibrated beam training for millimeter-wave communication systems. IEEE Transactions on Communications, 69(10), 6706–6721.

    Article  Google Scholar 

  7. Zhao, J., Gao, F., Jia, W., Zhang, S., Jin, S., & Lin, H. (2017). Angle domain hybrid precoding and channel tracking for millimeter wave massive mimo systems. IEEE Transactions on Wireless Communications, 16(10), 6868–6880.

    Article  Google Scholar 

  8. Gao, F., Wang, B., Xing, C., An, J., & Li, G. Y. (2021). Wideband beamforming for hybrid massive mimo terahertz communications. IEEE Journal on Selected Areas in Communications, 39(6), 1725–1740.

    Article  Google Scholar 

  9. Hur, S., Kim, T., Love, D. J., Krogmeier, J. V., Thomas, T. A., & Ghosh, A. (2013). Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Transactions on Communications, 61(10), 4391–4403.

    Article  Google Scholar 

  10. Liu, X., Zou, W., & Chen, S. (2018). Joint design of analog and digital codebooks for hybrid precoding in millimeter wave massive mimo systems. IEEE Access, 6, 69818–69825.

    Article  Google Scholar 

  11. Jayaprakasam, S., Ma, X., Choi, J. W., & Kim, S. (2017). Robust beam-tracking for mmwave mobile communications. IEEE Communications Letters, 21(12), 2654–2657.

    Article  Google Scholar 

  12. Gao, X., Dai, L., Zhang, Y., Xie, T., Dai, X., & Wang, Z. (2016). Fast channel tracking for terahertz beamspace massive mimo systems. IEEE Transactions on Vehicular Technology, 66(7), 5689–5696.

    Article  Google Scholar 

  13. Zhu, D., Choi, J., Cheng, Q., Xiao, W., & Heath, R. W. (2018). High-resolution angle tracking for mobile wideband millimeter-wave systems with antenna array calibration. IEEE Transactions on Wireless Communications, 17(11), 7173–7189.

    Article  Google Scholar 

  14. Lin, C., Li, G. Y., & Wang, L. (2017). Subarray-based coordinated beamforming training for mmwave and sub-thz communications. IEEE Journal on Selected Areas in Communications, 35(9), 2115–2126.

    Article  Google Scholar 

  15. Tan, J., & Dai, L. (2019). Delay-phase precoding for thz massive mimo with beam split. In: 2019 IEEE Global Communications Conference (GLOBECOM). pp. 1–6. IEEE

  16. Ghasempour, Y., Shrestha, R., Charous, A., Knightly, E., & Mittleman, D. M. (2020). Single-shot link discovery for terahertz wireless networks. Nature communications, 11(1), 2017.

    Article  Google Scholar 

  17. Huang, H., Peng, Y., Yang, J., Xia, W., & Gui, G. (2019). Fast beamforming design via deep learning. IEEE Transactions on Vehicular Technology, 69(1), 1065–1069.

    Article  Google Scholar 

  18. Bai, T., & Heath, R. W. (2014). Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications, 14(2), 1100–1114.

    Article  Google Scholar 

  19. Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5g) wireless networks-with a focus on propagation models. IEEE Transactions on antennas and propagation, 65(12), 6213–6230.

    Article  Google Scholar 

  20. Chen, S., Jiang, Z., Zhou, S., & Niu, Z. (2018). Time-sequence channel inference for beam alignment in vehicular networks. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1199–1203. IEEE

  21. Ni, Z., Zhang, J. A., Yang, K., Gao, F., & An, J. (2019). Estimation of multiple angle-of-arrivals with localized hybrid subarrays for millimeter wave systems. IEEE Transactions on Communications, 68(3), 1897–1910.

    Article  Google Scholar 

  22. Chen, K., Qi, C., & Li, G. Y. (2019). Two-step codeword design for millimeter wave massive mimo systems with quantized phase shifters. IEEE Transactions on Signal Processing, 68, 170–180.

    Article  MathSciNet  Google Scholar 

  23. Luo, X., Liu, W., & Wang, Z. (2019). Calibrated beam training for millimeter-wave massive mimo systems. In 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), pp. 1–5. IEEE

  24. Jeong, C., Park, J., & Yu, H. (2015). Random access in millimeter-wave beamforming cellular networks: Issues and approaches. IEEE Communications Magazine, 53(1), 180–185.

    Article  Google Scholar 

  25. Wang, J., Lan, Z., Pyo, C.-W., Baykas, T., Sum, C.-S., Rahman, M. A., Gao, J., Funada, R., Kojima, F., & Harada, H. (2009). Beam codebook based beamforming protocol for multi-gbps millimeter-wave wpan systems. IEEE Journal on Selected Areas in Communications, 27(8), 1390–1399.

    Article  Google Scholar 

  26. Wang, J., Lan, Z., Sum, C.-S., Pyo, C.-W., Gao, J., Baykas, T., Rahman, A., Funada, R., Kojima, F., & Lakkis, I. (2009). Beamforming codebook design and performance evaluation for 60ghz wideband wpans. In 2009 IEEE 70th Vehicular Technology Conference Fall, pp. 1–6. IEEE

  27. Xiao, Z., He, T., Xia, P., & Xia, X.-G. (2016). Hierarchical codebook design for beamforming training in millimeter-wave communication. IEEE Transactions on Wireless Communications, 15(5), 3380–3392.

    Article  Google Scholar 

  28. Dai, F., & Wu, J. (2006). Efficient broadcasting in ad hoc wireless networks using directional antennas. IEEE Transactions on Parallel and Distributed Systems, 17(4), 335–347.

    Article  Google Scholar 

  29. Kim, J., & Molisch, A. F. (2014). Fast millimeter-wave beam training with receive beamforming. Journal of Communications and Networks, 16(5), 512–522.

    Article  Google Scholar 

  30. Vieira, J., Leitinger, E., Sarajlic, M., Li, X., & Tufvesson, F. (2017). Deep convolutional neural networks for massive mimo fingerprint-based positioning. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6 . IEEE

  31. Alkhateeb, A., Alex, S., Varkey, P., Li, Y., Qu, Q., & Tujkovic, D. (2018). Deep learning coordinated beamforming for highly-mobile millimeter wave systems. IEEE Access, 6, 37328–37348.

    Article  Google Scholar 

  32. Wang, T., Wen, C.-K., Jin, S., & Li, G. Y. (2018). Deep learning-based csi feedback approach for time-varying massive mimo channels. IEEE Wireless Communications Letters, 8(2), 416–419.

    Article  Google Scholar 

  33. Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

Download references

Funding

Funding: There is no funding for this research article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeyakumar.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyakumar, P., Vishwa, S., Prakash, V. et al. Long-short term memory based wideband beam tracking scheme for massive mimo systems. Wireless Netw 30, 67–76 (2024). https://doi.org/10.1007/s11276-023-03460-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03460-z

Keywords

Navigation