Skip to main content
Log in

QoS supported redundancy balanced data transmission scheme for wireless body area network based H-IoT

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless body area network applications for health monitoring need to transfer data to the coordinator node with the highest quality of service (QoS). However, the sensors may generate redundant data, which can overload the transmission and processing of data and negatively impact the network’s QoS parameters. Maintaining the network QoS parameters such as network lifetime, network stability, energy consumption, throughput, data transmission reliability, and packet delivery delay is a challenging task. This paper proposes a QoS supported Redundancy Balanced Data Transmission scheme (RBDT) to address the above maintained problem. RBDT comprises three steps: 1- Node behavioral recognition, 2- Cooperative relay selection, and 3- Redundancy reduction based on compressive sampling. Simulations were performed on a real-time dataset. The results show that the proposed RBDT scheme performs better than state-of-art methods available in the literature to ensure network QoS parameters as mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys Tutorials, 16(3), 1658–1686. https://doi.org/10.1109/SURV.2013.121313.00064

    Article  Google Scholar 

  2. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. (2011). Body area networks: A survey. Mobile networks and applications, 16(2), 171–193.

    Article  Google Scholar 

  3. Shield, R. R., et al. (2010). Gradual electronic health record implementation: new insights on physician and patient adaptation. The Annals of Family Medicine, 8(4), 316–326.

    Article  Google Scholar 

  4. Vyas, A. & Pal, S. (2020). Exploiting redundancy and mobility in energy-efficient communication for wbans 1–8.

  5. Sagar, A. K., Singh, S., & Kumar, A. (2020). Energy-aware wban for health monitoring using critical data routing (cdr). Wireless Personal Communications, 112, 273–302.

    Article  Google Scholar 

  6. Irshad, T., Shan, R.-U., Ahmad, R. W., Khalid, A., & Ab Hamid, S. H. (2020). Multi-rat based adaptive quality of service (qos) management in wban. Malaysian Journal of Computer Science, 33(4), 252–269.

    Article  Google Scholar 

  7. Qureshi, K. N., Din, S., Jeon, G., & Piccialli, F. (2020). Link quality and energy utilization based preferable next hop selection routing for wireless body area networks. Computer Communications, 149, 382–392.

    Article  Google Scholar 

  8. Khan, M. D., et al. (2020). Energy harvested and cooperative enabled efficient routing protocol (ehcrp) for iot-wban. Sensors, 20(21), 6267.

    Article  Google Scholar 

  9. Sandhu, M.M. et al. (2014). Reec: Reliable energy efficient critical data routing in wireless body area networks 446–451.

  10. Nadeem, Q. et al. (2013). Simple: Stable increased-throughput multi-hop protocol for link efficiency in wireless body area networks 221–226.

  11. Geetha, M., & Ganesan, R. (2021). Cepran-cooperative energy efficient and priority based reliable routing protocol with network coding for wban. Wireless Personal Communications, 117(4), 3153–3171.

    Article  Google Scholar 

  12. Javaid, N., Abbas, Z., Fareed, M., Khan, Z. A., & Alrajeh, N. (2013). M-attempt: A new energy-efficient routing protocol for wireless body area sensor networks. Procedia Computer Science, 19, 224–231.

    Article  Google Scholar 

  13. El Sayed, A., Harb, H., Ruiz, M., & Velasco, L. (2020). Zizo: A zoom-in zoom-out mechanism for minimizing redundancy and saving energy in wireless sensor networks. IEEE Sensors Journal, 21(3), 3452–3462.

    Article  Google Scholar 

  14. Passos, C., Pedroso, C., Batista, A., Nogueira, M. & Santos, A. (2020). Grown: Local data compression in real-time to support energy efficiency in wban 1–6. https://doi.org/10.1109/LATINCOM50620.2020.9282319.

  15. Almashaqbeh, G., Hayajneh, T., Vasilakos, A. V., & Mohd, B. J. (2014). Qos-aware health monitoring system using cloud-based wbans. Journal of medical systems, 38(10), 1–20.

    Article  Google Scholar 

  16. Rasheed, M. B., et al. (2017). Delay and energy consumption analysis of priority guaranteed mac protocol for wireless body area networks. Wireless networks, 23(4), 1249–1266.

    Article  MathSciNet  Google Scholar 

  17. Singh, S., & Chaurasiya, V. K. (2022). Mutual authentication framework using fog computing in healthcare. Multimedia Tools and Applications, 78(19), 28309–28330.

    Article  Google Scholar 

  18. Middya, R., Chakravarty, N., & Naskar, M. K. (2017). Compressive sensing in wireless sensor networks-a survey. IETE technical review, 34(6), 642–654.

    Article  Google Scholar 

  19. Bangash, J. I., Abdullah, A. H., Razzaque, M. A., & Khan, A. W. (2015). Critical data routing (cdr) for intra wireless body sensor networks. TELKOMNIKA (Telecommunication Computing Electronics and Control), 13(1), 181–192.

    Article  Google Scholar 

  20. Newell, G., & Vejarano, G. (2020). Motion-based routing and transmission power control in wireless body area networks. IEEE Open Journal of the Communications Society, 1, 444–461.

    Article  Google Scholar 

  21. Samanta, A., & Nguyen, T. G. (2022). Quality-driven energy-efficient big data aggregation in wbans. IEEE Sensors Letters, 6(8), 1–4.

    Article  Google Scholar 

  22. Misra, S., & Samanta, A. (2018). Traffic-aware efficient mapping of wireless body area networks to health cloud service providers in critical emergency situations. IEEE Transactions on Mobile Computing, 17(12), 2968–2981.

    Article  Google Scholar 

  23. Samanta, A., & Li, Y. (2018). Distributed pricing policy for cloud-assisted body-to-body networks with optimal qos and energy considerations. IEEE Transactions on Services Computing, 14(3), 668–682.

    Article  Google Scholar 

  24. Samanta, A., & Misra, S. (2018). Dynamic connectivity establishment and cooperative scheduling for qos-aware wireless body area networks. IEEE Transactions on Mobile Computing, 17(12), 2775–2788.

    Article  Google Scholar 

  25. Samanta, A., Li, Y. & Chen, S. (2018). Qos-aware heuristic scheduling with delay-constraint for wbsns 1–7.

  26. Samanta, A. & Misra, S. (2017). Erem: Energy-efficient resource management in body area networks with fault tolerance 1–6.

  27. Samanta, A., Bera, S., & Misra, S. (2015). Link-quality-aware resource allocation with load balance in wireless body area networks. IEEE Systems Journal, 12(1), 74–81.

    Article  Google Scholar 

  28. Mehmood, G., Khan, M. Z., Abbas, S., Faisal, M., & Rahman, H. U. (2020). An energy-efficient and cooperative fault-tolerant communication approach for wireless body area network. IEEE Access, 8, 69134–69147.

    Article  Google Scholar 

  29. Candes, E. & Romberg, J. (2005). l1-magic: Recovery of sparse signals via convex programming. URL:www.acm.caltech.edu/l1magic/downloads/l1magic.pdf4, 14.

  30. Zhang, G.-Q., et al. (2018). The national sleep research resource: towards a sleep data commons. Journal of the American Medical Informatics Association, 25(10), 1351–1358.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Chaurasiya, V.K. QoS supported redundancy balanced data transmission scheme for wireless body area network based H-IoT. Wireless Netw 29, 3793–3808 (2023). https://doi.org/10.1007/s11276-023-03434-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03434-1

Keywords

Navigation