Skip to main content
Log in

Compressive sensing based indoor localization fingerprint collection and construction

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Localization based on fingerprint has been viewed as a popular indoor localization technique, which uses the signal strength of different positions as the location fingerprint. The localization model can thus be constructed by analyzing the relationship between the location fingerprint and the target location. However, this method requires the manual acquisition of fingerprint signal data in an offline phase, which has become a bottleneck for practical application, especially in large-scale fields. Therefore, how to reduce the workload in fingerprint collection has become a significant issue. This paper invokes a compressive sensing-based method to reduce fingerprint construction complexity. First, the k-singular value decomposition algorithm based on an overcomplete dictionary is employed to sparse the fingerprint signal. Then, considering the uncertainty of the signal sparsity in the indoor environment, an adaptive fingerprint signal reconstruction algorithm based on error weight is proposed to construct signals with variable sparsity. We test the proposed fingerprint reconstruction on both actual RSSI and geomagnetic fingerprints. Experiments show that the fingerprint database of 132 reference positions can be reconstructed with only 50 compressed samples, which reduces the workload of offline collection by 62\(\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xie, Y., Wang, Y., Nallanathan, A., & Wang, L. (2016). An improved k-nearest-neighbor indoor localization method based on spearman distance. IEEE Signal Processing Letters, 23(3), 351–355. https://doi.org/10.1109/LSP.2016.2519607

    Article  Google Scholar 

  2. Khatab, Z. E., Hajihoseini, A., & Ghorashi, S. A. (2018). A fingerprint method for indoor localization using autoencoder based deep extreme learning machine. IEEE Sensors Letters, 2(1), 1–4. https://doi.org/10.1109/LSENS.2017.2787651

    Article  Google Scholar 

  3. Zhang, Y., Zhu, Y., Lu, M., & Chen, A. (2013). Using compressive sensing to reduce fingerprint collection for indoor localization. In 2013 IEEE wireless communications and networking conference (WCNC) (pp. 4540–4545). https://doi.org/10.1109/WCNC.2013.6555310

  4. He, S., Chan, S.-H.G., Yu, L., & Liu, N. (2019). Maxlifd: Joint maximum likelihood localization fusing fingerprints and mutual distances. IEEE Transactions on Mobile Computing, 18(3), 602–617. https://doi.org/10.1109/TMC.2018.2841842

    Article  Google Scholar 

  5. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306. https://doi.org/10.1109/TIT.2006.871582

    Article  MathSciNet  Google Scholar 

  6. Kim, B., & Kong, S.-H. (2016). A novel indoor positioning technique using magnetic fingerprint difference. IEEE Transactions on Instrumentation and Measurement, 65(9), 2035–2045. https://doi.org/10.1109/TIM.2016.2566759

    Article  Google Scholar 

  7. Zhou, C., Liu, J., Sheng, M., Zheng, Y., & Li, J. (2021). Exploiting fingerprint correlation for fingerprint-based indoor localization: A deep learning based approach. IEEE Transactions on Vehicular Technology, 70(6), 5762–5774. https://doi.org/10.1109/TVT.2021.3075539

    Article  Google Scholar 

  8. Liu, X.-Y., & Wang, X. (2021). Real-time indoor localization for smartphones using tensor-generative adversarial nets. IEEE Transactions on Neural Networks and Learning Systems, 32(8), 3433–3443. https://doi.org/10.1109/TNNLS.2020.3010724

    Article  MathSciNet  Google Scholar 

  9. Ma, L., Zhang, Y., & Qin, D. (2022). A novel indoor fingerprint localization system based on distance metric learning and ap selection. IEEE Transactions on Instrumentation and Measurement, 71, 1–15. https://doi.org/10.1109/TIM.2021.3126014

    Article  Google Scholar 

  10. Faragher, R., & Harle, R. (2015). Location fingerprinting with bluetooth low energy beacons. IEEE Journal on Selected Areas in Communications, 33(11), 2418–2428. https://doi.org/10.1109/JSAC.2015.2430281

    Article  Google Scholar 

  11. Xia, H., Zuo, J., Liu, S., & Qiao, Y. (2019). Indoor localization on smartphones using built-in sensors and map constraints. IEEE Transactions on Instrumentation and Measurement, 68(4), 1189–1198. https://doi.org/10.1109/TIM.2018.2863478

    Article  Google Scholar 

  12. Chen, Z., Zhu, Q., & Soh, Y. C. (2016). Smartphone inertial sensor-based indoor localization and tracking with iBeacon corrections. IEEE Transactions on Industrial Informatics, 12(4), 1540–1549. https://doi.org/10.1109/TII.2016.2579265

    Article  Google Scholar 

  13. He, S., & Chan, S.-H.G. (2016). Tilejunction: Mitigating signal noise for fingerprint-based indoor localization. IEEE Transactions on Mobile Computing, 15(6), 1554–1568. https://doi.org/10.1109/TMC.2015.2463287

    Article  Google Scholar 

  14. Feng, C., Au, W. S. A., Valaee, S., & Tan, Z. (2012). Received-signal-strength-based indoor positioning using compressive sensing. IEEE Transactions on Mobile Computing, 11(12), 1983–1993. https://doi.org/10.1109/TMC.2011.216

    Article  Google Scholar 

  15. Dinh, T.-M.T., Duong, N.-S., & Sandrasegaran, K. (2020). Smartphone-based indoor positioning using BLE iBeacon and reliable lightweight fingerprint map. IEEE Sensors Journal, 20(17), 10283–10294. https://doi.org/10.1109/JSEN.2020.2989411

    Article  Google Scholar 

  16. Zuo, J., Liu, S., Xia, H., & Qiao, Y. (2018). Multi-phase fingerprint map based on interpolation for indoor localization using iBeacons. IEEE Sensors Journal, 18(8), 3351–3359. https://doi.org/10.1109/JSEN.2018.2789431

    Article  Google Scholar 

  17. Zhao, H., Huang, B., & Jia, B. (2016). Applying kriging interpolation for WiFi fingerprinting based indoor positioning systems. In IEEE wireless communications and networking conference WCNC (pp. 1–6). https://doi.org/10.1109/WCNC.2016.7565018

  18. Yeh, S.-C., Hsu, W.-H., Lin, W.-Y., & Wu, Y.-F. (2020). Study on an indoor positioning system using Earth’s magnetic field. IEEE Transactions on Instrumentation and Measurement, 69(3), 865–872. https://doi.org/10.1109/TIM.2019.2905750

    Article  Google Scholar 

  19. Lin, K., Chen, M., Deng, J., Hassan, M. M., & Fortino, G. (2016). Enhanced fingerprinting and trajectory prediction for IoT localization in smart buildings. IEEE Transactions on Automation Science and Engineering, 13(3), 1294–1307. https://doi.org/10.1109/TASE.2016.2543242

    Article  Google Scholar 

  20. Guo, X., Li, L., Ansari, N., & Liao, B. (2018). Accurate WiFi localization by fusing a group of fingerprints via a global fusion profile. IEEE Transactions on Vehicular Technology, 67(8), 7314–7325. https://doi.org/10.1109/TVT.2018.2833029

    Article  Google Scholar 

  21. Luo, J., Zhang, Z., Wang, C., Liu, C., & Xiao, D. (2019). Indoor multifloor localization method based on WiFi fingerprints and LDA. IEEE Transactions on Industrial Informatics, 15(9), 5225–5234. https://doi.org/10.1109/TII.2019.2912055

    Article  Google Scholar 

  22. Zhang, S., Liu, K., Zhang, Y., & Wang, Y. (2022). A coarse fingerprint-assisted multiple target indoor device-free localization with visible light sensing. IEEE Sensors Journal, 22(2), 1461–1473. https://doi.org/10.1109/JSEN.2021.3130711

    Article  Google Scholar 

  23. Sun, W., Xue, M., Yu, H., Tang, H., & Lin, A. (2018). Augmentation of fingerprints for indoor WiFi localization based on Gaussian process regression. IEEE Transactions on Vehicular Technology, 67(11), 10896–10905. https://doi.org/10.1109/TVT.2018.2870160

    Article  Google Scholar 

  24. Li, L., Wen, G., Wang, Z., & Yang, Y. (2020). Efficient and secure image communication system based on compressed sensing for IoT monitoring applications. IEEE Transactions on Multimedia, 22(1), 82–95. https://doi.org/10.1109/TMM.2019.2923111

    Article  Google Scholar 

  25. Sun, Y., Chen, J., Liu, Q., Liu, B., & Guo, G. (2020). Dual-path attention network for compressed sensing image reconstruction. IEEE Transactions on Image Processing, 29, 9482–9495. https://doi.org/10.1109/TIP.2020.3023629

    Article  Google Scholar 

  26. Zhiyuan, S., Qianqian, W., & Xinmiao, C. (2021). A sparsity adaptive compressed signal reconstruction based on sensing dictionary. Journal of Systems Engineering and Electronics, 32(6), 1345–1353. https://doi.org/10.23919/JSEE.2021.000114

    Article  Google Scholar 

  27. Fu, W., Lu, T., & Li, S. (2020). Context-aware compressed sensing of hyperspectral image. IEEE Transactions on Geoscience and Remote Sensing, 58(1), 268–280. https://doi.org/10.1109/TGRS.2019.2936229

    Article  Google Scholar 

  28. Fu, H., & Chi, Y. (2018). Quantized spectral compressed sensing: Cramer–Rao bounds and recovery algorithms. IEEE Transactions on Signal Processing, 66(12), 3268–3279. https://doi.org/10.1109/TSP.2018.2827326

    Article  MathSciNet  Google Scholar 

  29. Hwang, W., Huang, P., Kung, B., Ho, J., & Jong, T. (2019). Frame-based sparse analysis and synthesis signal representations and parseval K-SVD. IEEE Transactions on Signal Processing, 67(12), 3330–3343. https://doi.org/10.1109/TSP.2019.2916105

    Article  MathSciNet  Google Scholar 

  30. De, P., Chatterjee, A., & Rakshit, A. (2021). Regularized K-SVD-based dictionary learning approaches for PIR sensor-based detection of human movement direction. IEEE Sensors Journal, 21(5), 6459–6467. https://doi.org/10.1109/JSEN.2020.3040228

    Article  Google Scholar 

  31. Zeng, M., & Chen, Z. (2020). SOSO boosting of the K-SVD denoising algorithm for enhancing fault-induced impulse responses of rolling element bearings. IEEE Transactions on Industrial Electronics, 67(2), 1282–1292. https://doi.org/10.1109/TIE.2019.2898583

    Article  Google Scholar 

  32. Qin, Y., Zou, J., Tang, B., Wang, Y., & Chen, H. (2020). Transient feature extraction by the improved orthogonal matching pursuit and K-SVD algorithm with adaptive transient dictionary. IEEE Transactions on Industrial Informatics, 16(1), 215–227. https://doi.org/10.1109/TII.2019.2909305

    Article  Google Scholar 

  33. Raja, H., & Bajwa, W. U. (2016). Cloud K-SVD: A collaborative dictionary learning algorithm for big, distributed data. IEEE Transactions on Signal Processing, 64(1), 173–188. https://doi.org/10.1109/TSP.2015.2472372

    Article  MathSciNet  Google Scholar 

  34. Chen, J., Jia, J., Deng, Y., Wang, X., & Aghvami, A. (2018). Adaptive compressive sensing and data recovery for periodical monitoring wireless sensor networks. Sensors, 18(10), 3369. https://doi.org/10.3390/s18103369

    Article  Google Scholar 

  35. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322. https://doi.org/10.1109/TSP.2006.881199

    Article  Google Scholar 

  36. Chen, S. S., & Saunders, D. M. A. (2001). Atomic decomposition by basis pursuit. SIAM Review, 43(1), 129–159.

    Article  MathSciNet  Google Scholar 

  37. Sahoo, S. K., & Makur, A. (2015). Signal recovery from random measurements via extended orthogonal matching pursuit. IEEE Transactions on Signal Processing, 63(10), 2572–2581.

    Article  MathSciNet  Google Scholar 

  38. Wu, H., & Wang, S. (2012). Adaptive sparsity matching pursuit algorithm for sparse reconstruction. IEEE Signal Processing Letters, 19(8), 471–474. https://doi.org/10.1109/LSP.2012.2188793

    Article  Google Scholar 

  39. Rubinstein, R., Peleg, T., & Elad, M. (2013). Analysis K-SVD: A dictionary-learning algorithm for the analysis sparse model. IEEE Transactions on Signal Processing, 61(3), 661–677. https://doi.org/10.1109/TSP.2012.2226445

    Article  MathSciNet  Google Scholar 

  40. Mao, K., Zhu, Q., Song, M., Li, H., Ning, B., Pedersen, G. F., & Fan, W. (2022). Machine learning-based 3D channel modeling for U2V mmWave communications. IEEE Internet of Things Journal, 9(18), 17592–17607. https://doi.org/10.1109/JIOT.2022.3155773

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants Nos. 61972079, 62172084, 62132004, in part by the Major Research Plan of National Natural Science Foundation of China under Grant No. 92167103, in part by the LiaoNing Revitalization Talents Program under Grant No. XLYC2007162, in part by the LiaoNing Key Research and Development Program under Grant No. 2023JH2/101300196, in part by the Central Government Guided Local Science and Technology Development Fund Project under Grant No. 2020ZY0003, in part by the Science and Technology Plan Project of Inner Mongolia Autonomous Region of China under Grant No. 2020GG0189, and in part by the Fundamental Research Funds for the Central Universities under Grants Nos. N2224001-7, N2216009, N2216006, and N2116004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Guan, H., Chen, J. et al. Compressive sensing based indoor localization fingerprint collection and construction. Wireless Netw 30, 51–65 (2024). https://doi.org/10.1007/s11276-023-03406-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03406-5

Keywords

Navigation