Skip to main content
Log in

Wideband monopole antenna: enhanced gain and circular polarization for satellite communication

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This article introduces a wideband monopole antenna with improved peak gain and axial ratio bandwidth that may be applied to various wireless systems and ITU satellite communication systems. The antenna operates in the frequency range of 6 GHz to 8 GHz. The low profile proposed antenna is sufficiently compact (0.8λ0 × λ0, where λ0 be the free space wavelength at fr of 6 GHz) and printed on inexpensive FR4-epoxy substrate (εr = 4.4 and, tanδ = 0.02) that is 1.6 mm thick. The top layer is incorporated with the microstrip feed line and tilted L-shaped strip. On the other side, the bottom layer has also a tilted inverted L-shaped strip. In order to achieve better performance from the proposed antenna, a reflector has been embedded. Peak gain of 8 dBi at 6.2 GHz, 3.4 GHz (5.6 GHz–more than 9 GHz) impedance bandwidth (IBW) and 810 MHz (6.59–7.4 GHz) 3-dB Axial Ratio Bandwidth (ARBW) have been achieved. The proposed antenna has been fabricated and measured. The measured data justifies the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lokman, A. H., Soh, P. J., Azemi, S. N., Jamlos, M. F., Lago, H., & Abdullah Al-Hadi, A. (2018). Gain enhanced circularly polarized antenna integrated with artificial magnetic conductor for S-band pico-satellites. International Journal of RF and Microwave Computer-Aided Engineering, 28, e21462.

    Article  Google Scholar 

  2. AboEl-Hassan, M., Hussein, K. F., & Awadalla, K. H. (2020). A novel microstrip antenna with L-shaped slots for circularly polarized satellite applications. Microwave and Optical Technology Letters, 62(2), 839–844.

    Article  Google Scholar 

  3. Tripathi, D., Srivastava, D. K., & Verma, R. K. (2021). Bandwidth enhancement of slotted rectangular wideband microstrip antenna for the application of WLAN/WiMAX. Wireless Personal Communications, 119, 1193–1207.

    Article  Google Scholar 

  4. Wang, Z., Liu, J., & Long, Y. (2019). A simple wide-bandwidth and high-gain microstrip patch antenna with both sides shorted. IEEE Antennas and Wireless Propagation Letters, 18(6), 1144–1148.

    Article  Google Scholar 

  5. Mazinani, S. M., & Hassani, H. R. (2009). A novel broadband plate-loaded planar monopole antenna. IEEE Antennas and Wireless Propagation Letters, 8, 1123–1126.

    Article  Google Scholar 

  6. Mondal, K., & Sarkar, P. P. (2016). U-shape broadband monopole antenna with modified ground plane. Microwave and Optical Technology Letters, 58(11), 2544–2547.

    Article  Google Scholar 

  7. Mondal, K. (2021). Axial ratio (AR) and impedance bandwidth (IBW) enhancement of circular polarized (CP) monopole antenna. AEU-International Journal of Electronics and Communications, 134, 153649.

    Google Scholar 

  8. Ding, K., Gao, C., Wu, Y., Qu, D., & Zhang, B. (2017). A broadband circularly polarized printed monopole antenna with parasitic strips. IEEE Antennas and Wireless Propagation Letters, 16, 2509–2512.

    Article  Google Scholar 

  9. Ding, K., Gao, C., Yu, T., & Qu, D. (2014). Broadband C-shaped circularly polarized monopole antenna. IEEE Transactions on Antennas and Propagation, 63(2), 785–790.

    Article  Google Scholar 

  10. Chandu, D. S., & Karthikeyan, S. S. (2018). Broadband circularly polarized printed monopole antenna with protruded L-shaped and inverted L-shaped strips. Microwave and Optical Technology Letters, 60(1), 242–248.

    Article  Google Scholar 

  11. Feng, G., Chen, L., & Shi, X. (2020). A broadband circularly polarized monopole antenna employing parasitic loops and defective ground plane. Microwave and Optical Technology Letters, 62(1), 251–256.

    Article  Google Scholar 

  12. Wang, L., Fang, W., En, Y., Huang, Y., Shao, W., & Yao, B. (2019). A new broadband circularly polarized square-slot antenna with low axial ratios. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21502.

    Article  Google Scholar 

  13. Jhajharia, T., Tiwari, V., Bhatnagar, D., Yadav, D., & Rawat, S. (2018). A dual-band CP dual-orthogonal arms monopole antenna with slanting edge DGS for C-band wireless applications. AEU-International Journal of Electronics and Communications, 84, 251–257.

    Google Scholar 

  14. Bag, B., Biswas, S., & Sarkar, P. P. (2022). A wide circularly polarized dual-band isosceles trapezoidal monopole antenna with modified ground plane. International Journal of Communication Systems, 35(3), e5037.

    Article  Google Scholar 

  15. Hall, P. S., Huang, J., Rammos, E., & Roederer, A. (1989). Gain of circularly polarised arrays composed of linearly polarised elements. Electronics Letters, 25(2), 124–125.

    Article  Google Scholar 

  16. Huang, J. (1995). A Ka-band circularly polarized high-gain microstrip array antenna. IEEE Transactions on antennas and propagation, 43(1), 113–116.

    Article  Google Scholar 

  17. Stutzman, W. L., & Thiele, G. A. (2013). Antenna theory and design (3rd ed., pp. 70–99). Wiley.

    Google Scholar 

  18. Saraswat, K., Kumar, T., & Harish, A. R. (2020). A corrugated G-shaped grounded ring slot antenna for wideband circular polarization. International Journal of Microwave and Wireless Technologies, 12(5), 431–436.

    Article  Google Scholar 

  19. Jou, C. F., Wu, J. W., & Wang, C. J. (2009). Novel broadband monopole antennas with dual-band circular polarization. IEEE transactions on antennas and propagation, 57(4), 1027–1034.

    Article  Google Scholar 

  20. Wang, S. B., Niknejad, A. M., & Brodersen, R. W. (2006). Circuit modeling methodology for UWB omnidirectional small antennas. IEEE Journal on Selected Areas in Communications, 24(4), 871–877.

    Article  Google Scholar 

  21. Caratelli, D., Cicchetti, R., Bit-Babik, G., & Faraone, A. (2007). Circuit model and near-field behavior of a novel patch antenna for WWLAN applications. Microwave and Optical Technology Letters, 49(1), 97–100.

    Article  Google Scholar 

  22. Saraswat, K., & Harish, A. R. (2019). Flexible dual-band dual-polarised CPW-fed monopole antenna with discrete-frequency reconfigurability. IET Microwaves, Antennas & Propagation, 13(12), 2053–2060.

    Article  Google Scholar 

  23. Ameen, M., & Chaudhary, R. K. (2020). Electrically small circularly polarized antenna using vialess CRLH-TL and fractals for L-band mobile satellite applications. Microwave and Optical Technology Letters, 62(4), 1686–1696.

    Article  Google Scholar 

  24. Kumar, A., Deegwal, J. K., & Sharma, M. M. (2018). Design of multi-polarised quad-band planar antenna with parasitic multistubs for multiband wireless communication. IET Microwaves, Antennas & Propagation, 12(5), 718–726.

    Article  Google Scholar 

  25. Nakamura, T., & Fukusako, T. (2011). Broadband design of circularly polarized microstrip patch antenna using artificial ground structure with rectangular unit cells. IEEE Transactions on Antennas and Propagation, 59(6), 2103–2110.

    Article  Google Scholar 

  26. Zandikiya, F., & Asadpor, L. (2019). Broadband circularly polarized slot antenna array fed by asymmetric CPW for C-band applications. IETE Journal of Research, 65(1), 33–38.

    Article  Google Scholar 

  27. Kumar, A., & Raghavan, S. (2017). Design of a broadband planar cavity-backed circular patch antenna. AEU-International Journal of Electronics and Communications, 82, 413–419.

    Google Scholar 

  28. Zhang, B., Yao, P., & Duan, J. (2018). Gain-enhanced antenna backed with the fractal artificial magnetic conductor. IET Microwaves, Antennas & Propagation, 12(9), 1457–1460.

    Article  Google Scholar 

  29. Mondal, T., Maity, S., Ghatak, R., & Bhadra Chaudhuri, S. R. (2018). Design and analysis of a wideband circularly polarised perturbed psi-shaped antenna. IET Microwaves, Antennas & Propagation, 12(9), 1582–1586.

    Article  Google Scholar 

  30. Jash, S. S., Goswami, C., & Ghatak, R. (2019). A low profile broadband circularly polarized planar antenna with an embedded slot realized on a reactive impedance surface. AEU-International Journal of Electronics and Communications, 108, 62–72.

    Google Scholar 

  31. Sharma, A., Kanaujia, B. K., Dwari, S., Gangwar, D., Kumar, S., Choi, H. C., & Kim, K. W. (2019). Wideband high-gain circularly-polarized low RCS dipole antenna with a frequency selective surface. IEEE Access, 7, 156592–156602.

    Article  Google Scholar 

  32. Yang, D., Tang, Y., Sun, K., Liu, S., & Pan, J. (2020). Design of high-gain circularly polarized antennas based on vehicle application environment. IEEE Access, 8, 112735–112741.

    Article  Google Scholar 

  33. Zheng, Q., Guo, C., Ding, J., & Vandenbosch, G. A. (2020). A broadband low-RCS metasurface for CP patch antennas. IEEE Transactions on Antennas and Propagation, 69(6), 3529–3534.

    Article  Google Scholar 

  34. Han, Z. J., Song, W., & Sheng, X. Q. (2020). Broadband circularly polarized antenna by using polarization conversion metasurface. The Applied Computational Electromagnetics Society Journal (ACES), 35, 656–661.

    Google Scholar 

  35. Nawaz, H., Niazi, A. U., & Ahmad, M. (2021). Dual circularly polarized patch antenna with improved interport isolation for S-band satellite communication. International Journal of Antennas and Propagation. https://doi.org/10.1155/2021/8022207

    Article  Google Scholar 

  36. Shu, W. J., Li, J. Y., & Hao, S. S. (2021). Study on a broadband new structure dipole-shaped circularly polarized antenna. Microwave and Optical Technology Letters, 63(6), 1786–1791.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biplab Bag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bag, B., Mondal, K., Saha, S. et al. Wideband monopole antenna: enhanced gain and circular polarization for satellite communication. Wireless Netw 29, 2717–2731 (2023). https://doi.org/10.1007/s11276-023-03338-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03338-0

Keywords

Navigation