Skip to main content

Advertisement

Log in

Optimization of energy and delay on interval data based graph model of wireless sensor networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Emerging applications of wireless sensor networks (WSNs) in various domain of real-life require establishment of such routing topology for wireless sensors which can balance energy consumption with delay minimization. Despite a plethora research on energy and delay optimization in this field, work on developing delay minimum and energy efficient connected routing topology on heterogenous bi-directional WSNs where each node is assigned with a power interval, remain untouched. Considering this problem, we have introduced ‘Interval data based graph model (IDGM)’ and ‘Sorted-interval data based graph model (S-IDGM)’ of WSNs to explicitly deal with nodes’ power interval and proposed ‘Energy and Delay Optimization (EDO)’ algorithm to optimize S-IDGM such that the maximum topology delay, total topology delay and maximum node’s power interval become minimum in polynomial time complexity. A new function is formulated to estimate topology delay based on link distance and link interference after showing dependency analysis between link distance and link interference on large number of WSNs towards achieving optimal solutions. Extensive simulation work, graphical and statistical t-test analysis have been carried out to show the performance of EDO algorithm in minimizing topology delay and nodes’ power consumption, better than the existing algorithms from similar grounds. t-test analysis shows that the proposed EDO algorithm achieves optimal energy saving of nodes at 5% level of significance along with optimal minimization of max and total topology delay at 2% level of significance on S-IDGMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Authors can confirm that all relevant data are included in the article.

References

  1. Ahmed, A. A. (2013). An enhanced real-time routing protocol with load distribution for mobile wireless sensor networks. Computer Networks, 57(6), 1459–1473.

    Article  Google Scholar 

  2. Akkaya, K., & Younis, M. (2004). Energy-aware delay constrained routing in wireless sensor networks. International Journal of Communication Systems, 17(6), 663–687.

    Article  Google Scholar 

  3. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  4. Al Aghbari, Z., Khedr, A. M., Osamy, W., Arif, I., & Agrawal, D. P. (2020). Routing in wireless sensor networks using optimization techniques: A survey. Wireless Personal Communications, 111(4), 2407–2434.

    Article  Google Scholar 

  5. Ammari, H. M., & Das, S. K. (2008). A trade-off between energy and delay in data dissemination for wireless sensor networks using transmission range slicing. Computer Communications, 31(9), 1687–1704.

    Article  Google Scholar 

  6. Arikati, S. R., & Rangan, C. P. (1990). Linear algorithm for optimal path cover problem on interval graphs. Information Processing Letters, 35(3), 149–153.

    Article  MathSciNet  MATH  Google Scholar 

  7. Booth, K. S., & Lueker, G. S. (1976). Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences, 13(3), 335–379.

    Article  MathSciNet  MATH  Google Scholar 

  8. Boughanmi, N., & Song, Y. (2008). A new routing metric for satisfying both energy and delay constraints in wireless sensor networks. Journal of Signal Processing Systems, 51(2), 137–143.

    Article  Google Scholar 

  9. Bukhsh, M., Abdullah, S., Rahman, A., Asghar, M. N., Arshad, H., & Alabdulatif, A. (2021). An energy-aware, highly available, and fault-tolerant method for reliable IoT systems. IEEE Access, 9, 145363–145381.

    Article  Google Scholar 

  10. Cheng, L., Niu, J., Luo, C., Shu, L., Kong, L., Zhao, Z., & Gu, Y. (2018). Towards minimum-delay and energy-efficient flooding in low-duty-cycle wireless sensor networks. Computer Networks, 134, 66–77.

    Article  Google Scholar 

  11. Chincoli, M., Syed, A. A., Exarchakos, G., & Liotta, A. (2016). Power control in wireless sensor networks with variable interference. Mobile Information Systems. https://doi.org/10.1155/2016/3592581

    Article  Google Scholar 

  12. Daoud, W. B., Mchergui, A., Moulahi, T., & Alabdulatif, A. (2022). Cloud-IoT resource management based on artificial intelligence for energy reduction. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2022/2248962

    Article  Google Scholar 

  13. Dutt, S., Agrawal, S., & Vig, R. (2021). Delay-sensitive, reliable, energy-efficient, adaptive and mobility-aware (dream) routing protocol for WSNS. Wireless Personal Communications, 120, 1675–1703.

    Article  Google Scholar 

  14. Ebrahimi, D., Sharafeddine, S., Ho, P. H., & Assi, C. (2018). UAV-aided projection-based compressive data gathering in wireless sensor networks. IEEE Internet of Things Journal, 6(2), 1893–1905.

    Article  Google Scholar 

  15. Ergen, S. C., & Varaiya, P. (2007). Energy efficient routing with delay guarantee for sensor networks. Wireless Networks, 13(5), 679–690.

    Article  Google Scholar 

  16. Han, S.-W., Jeong, I.-S., & Kang, S.-H. (2013). Low latency and energy efficient routing tree for wireless sensor networks with multiple mobile sinks. Journal of Network and Computer Applications, 36(1), 156–166.

    Article  Google Scholar 

  17. Hu, Y., Liu, D., Wu, Y. (2016). A new distributed topology control algorithm based on optimization of delay in ad hoc networks. In 2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI), pp. 148-152.

  18. Huynh, T.-T., Dinh-Duc, A.-V., & Tran, C.-H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks, 18(4), 580–588.

    Article  Google Scholar 

  19. Kavra, R., Gupta, A., & Kansal, S. (2021). Interval graph based energy efficient routing scheme for a connected topology in wireless sensor networks. Wireless Networks, 27(8), 5085–5104.

    Article  Google Scholar 

  20. Ketshabetswe, L. K., Zungeru, A. M., Mangwala, M., Chuma, J. M., & Sigweni, B. (2019). Communication protocols for wireless sensor networks: A survey and comparison. Heliyon, 5(5), e01591. https://doi.org/10.1016/j.heliyon.2019.e01591

    Article  Google Scholar 

  21. Khalily-Dermany, M. (2021). Transmission power assignment in network-coding-based-multicast-wireless-sensor networks. Computer Networks, 196, 108203. https://doi.org/10.1016/j.comnet.2021.108203

    Article  Google Scholar 

  22. Kim, B.-S., Park, H., Kim, K. H., Godfrey, D., & Kim, K.-I. (2017). A survey on real-time communications in wireless sensor networks. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2017/1864847

    Article  Google Scholar 

  23. Li, X., Feng, H., Jiang, H., Zhu, B. (2016). A polynomial time algorithm for finding a spanning tree with maximum number of internal vertices on interval graphs. International Workshop on Frontiers in Algorithmics, 92-101.

  24. Li, Y., Chen, C. S., Song, Y.-Q., Wang, Z., & Sun, Y. (2009). Enhancing real-time delivery in wireless sensor networks with two-hop information. IEEE Transactions on Industrial Informatics, 5(2), 113–122.

    Article  Google Scholar 

  25. Majid, M., Habib, S., Javed, A. R., et al. (2022). Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: A systematic literature review. Sensors, 22(6), 2087.

    Article  Google Scholar 

  26. Moaveninejad, K., & Li, X.-Y. (2005). Low interference topology control for wireless ad hoc networks. Ad Hoc & Sensor Wireless Networks, 1(1–2), 41–64.

    Google Scholar 

  27. Noueihed, H., Harb, H., & Tekli, J. (2022). Knowledge-based virtual outdoor weather event simulator using unity 3D. The Journal of Supercomputing, 78(8), 10620–10655.

    Article  Google Scholar 

  28. Panda, B., & Shetty, D. P. (2013). Minimum interference strong bidirectional topology for wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 13(3–4), 243–253.

    Article  Google Scholar 

  29. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 15(2), 551–591.

    Article  Google Scholar 

  30. Pothuri, P.K., Sarangan, V., Thomas, J.P. (2006). Delay-constrained, energy-efficient routing in wireless sensor networks through topology control. In 2006 IEEE International Conference on Networking, Sensing and Control, pp. 35-41.

  31. Rachamalla, S., & Kancherla, A. S. (2016). A two hop based adaptive routing protocol for real-time wireless sensor networks. SpringerPlus, 5(1), 1–12.

    Article  Google Scholar 

  32. Ramani, S. V., & Jhaveri, R. H. (2022). SDN framework for mitigating time-based delay attack. Journal of Circuits, Systems and Computers, 31(15), 2250264. https://doi.org/10.1142/S0218126622502644

    Article  Google Scholar 

  33. Ramani, S., & Jhaveri, R. H. (2022). ML-Based delay attack detection and isolation for fault-tolerant software-defined industrial networks. Sensors, 22, 6958. https://doi.org/10.3390/s22186958

    Article  Google Scholar 

  34. Roy, A., Pachuau, J. L., & Saha, A. K. (2021). An overview of queuing delay and various delay based algorithms in networks. Computing, 103, 2361–2399.

    Article  MathSciNet  MATH  Google Scholar 

  35. Santi, P. (2005). Topology control in wireless ad hoc and sensor networks. ACM Computing Surveys (CSUR), 37(2), 164–194.

    Article  Google Scholar 

  36. Selvi, M., Velvizhy, P., Ganapathy, S., Nehemiah, H. K., & Kannan, A. (2019). A rule based delay constrained energy efficient routing technique for wireless sensor networks. Cluster Computing, 22(5), 10839–10848.

    Article  Google Scholar 

  37. Shahid, J., Muhammad, Z., Iqbal, Z., Almadhor, A. S., & Javed, A. R. (2022). Cellular automata trust-based energy drainage attack detection and prevention in wireless sensor networks. Computer Communications, 191, 360–367. https://doi.org/10.1016/j.comcom.2022.05.011

    Article  Google Scholar 

  38. Singla, P., & Munjal, A. (2020). Topology control algorithms for wireless sensor networks: A review. Wireless Personal Communications, 113, 2363–2385.

    Article  Google Scholar 

  39. Sun, G., Zhao, L., Chen, Z., & Qiao, G. (2015). Effective link interference model in topology control of wireless ad hoc and sensor networks. Journal of Network and Computer Applications, 52, 69–78.

    Article  Google Scholar 

  40. Uysal-Biyikoglu, E., Prabhakar, B., & El Gamal, A. (2002). Energy-efficient packet transmission over a wireless link. IEEE/ACM Transactions on Networking, 10(4), 487–499.

    Article  Google Scholar 

  41. Von Rickenbach, P., Wattenhofer, R., & Zollinger, A. (2009). Algorithmic models of interference in wireless ad hoc and sensor networks. IEEE/ACM Transactions on Networking, 17(1), 172–185.

    Article  Google Scholar 

  42. Wang, F., Liu, W., Wang, T., Zhao, M., Xie, M., Song, H., Li, X., & Liu, A. (2019). To reduce delay, energy consumption and collision through optimization duty-cycle and size of forwarding node set in wsns. IEEE Access, 7, 55983–56015.

    Article  Google Scholar 

  43. Xu, M., Yang, Q., & Shen, Z. (2017). Joint design of routing and power control over unreliable links in multi-hop wireless networks with energy-delay tradeoff. IEEE Sensors Journal, 17(23), 8008–8020.

    Article  Google Scholar 

  44. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  45. Zhang, R., Berder, O., Gorce, J.-M., & Sentieys, O. (2012). Energy-delay tradeoff in wireless multihop networks with unreliable links. Ad Hoc Networks, 10(7), 1306–1321.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavra, R., Gupta, A. & Kansal, S. Optimization of energy and delay on interval data based graph model of wireless sensor networks. Wireless Netw 29, 2293–2311 (2023). https://doi.org/10.1007/s11276-023-03292-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03292-x

Keywords

Navigation