Skip to main content
Log in

Distributed turbo coded spatial modulation based on code matched interleaver for MIMO system

  • OriginalPaper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper investigates the turbo coded-spatial modulation (TC-SM) scheme based on code matched interleaver (CMI) for multiple input multiple output (MIMO) antenna system. The information bits for the selection of transmit active antenna and for the M-QAM modulated symbols are protected by a forward error correcting turbo code. In this work, we demonstrate that parallel encoding and decoding construction of the TC-SM scheme enabled us to effectively extend the TC-SM scheme to a turbo coded-cooperative spatial modulation (TCC-SM) scheme with CMI placed at the relay node. Numerical results based on Monte Carlo simulations revealed that the TCC-SM and TC-SM schemes outperform state of the art polar coded-cooperative spatial modulation (PCC-SM) and polar coded spatial modulation (PC-SM) schemes, respectively, under identical conditions. This performance improvement in bit-error rate (BER) of the proposed TCC-SM and TC-SM schemes occurred due to the joint soft input soft output log maximum a posteriori probability (SISO-Log-MAP) iterative decoding at the receiver. Furthermore, the mathematical error performance of the TC-SM scheme has also been presented. The numerical results demonstrate that the proposed TCC-SM scheme offers robustness not only in BER performance over the practical (non-ideal) source to relay channel but also presents less encoding and decoding complexity as compared to the PCC-SM scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liu, L., Chi, Y., Yuen, C., Guan, Y. L., & Li, Y. (2019). Capacity-achieving MIMO-NOMA: iterative LMMSE detection. IEEE Transactions on Signal Processing, 67(7), 1758–1773.

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu, L., Chi, Y., Yuen, C., Guan, Y. L., Li, Y., & Huang, C. (2019). Gaussian message passing for overloaded massive MIMO-NOMA. IEEE Transaction on Wireless Communications, 18(1), 210–226.

    Article  Google Scholar 

  3. Liu, L., Yuen, C., Guan, Y. L., et al. (2016). Convergence analysis and assurance for Gaussian message passing iterative detector in massive MU-MIMO systems. IEEE Transaction on Wireless Communications, 15(9), 6487–6501.

    Article  Google Scholar 

  4. Lei, L., Liang, C, Y., & Ping, L. (2019). Capacity Optimality of AMP in Coded Systems. arXiv preprint arXiv: 1901.09559, 1-32.

  5. Yang, P., Xiao, Y., Guan, Y. L., et al. (2016). Single-carrier SM-MIMO: A promising design for broadband large-scale antenna systems. IEEE Communications Surveys and Tutorials, 18(3), 1687–1715.

    Article  Google Scholar 

  6. Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.

    Article  Google Scholar 

  7. Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance analysis. IEEE Communications Letters, 12(8), 545–547.

    Article  Google Scholar 

  8. Fu, J., Hou, C., Xiang, W., Yan, L., & Hou, Y. (2010). Generalized spatial modulation with multiple active transmit antennas. In Proceedings IEEE Global Commununication Conference (GLOBECOM) Workshops (pp. 839–844) Miami, FL, USA.

  9. Wang, J., Jia, S., & Song, J. (2012). Generalized spatial modulation system with multiple active transmit antennas and low complexity detection scheme. IEEE Transactions on Wireless Communications, 11(4), 1605–1615.

    Article  Google Scholar 

  10. Basar, E., Aygolu, U., Panayirci, E., & Poor, H. V. (2011). New trellis code design for spatial modulation. IEEE Transactions on Wireless Communications, 10(8), 2670–2680.

    Article  Google Scholar 

  11. Mesleh, R., Di Renzo, M., Haas, H., & Grant, P. M. (2010). Trellis coded spatial modulation. IEEE Transactions on Wireless Communications, 9(7), 2349–2361.

    Article  Google Scholar 

  12. Koca, M., & Sari, H. (2012). Bit-interleaved coded spatial modulation. In IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications, 2012. PIMRC 2012, (pp. 1949-1954), Sydney, Australia.

  13. Akuon, P., & Xu, H. (2014). Polar coded spatial modulation. IET Communications, 8(9), 1459–1466.

    Article  Google Scholar 

  14. Hashimoto, S., Ishii, K., & Ogose, S. (2013). Non-binary turbo coded spatial modulation. In Proceedings IEEE 78th Vehicular Technology Conference (VTC) (pp. 1–5) Las Vegas, USA.

  15. Yang, Z., Liang, C., Xu, X., & Ma, X. (2014). Block Markov superposition transmission with spatial modulation. IEEE Wireless Commununication Letters, 3(6), 565–568.

    Article  Google Scholar 

  16. Liu, H., Zheng, J., Dou, J., & Bai, B. (2014). EXIT-chart-based LDPC code design for spatial modulation. In International Conference on Information Science and Technology (ICIST) (pp. 557–560) Shenzheng, China.

  17. Feng, D., Xu, H., Zhang, Q., & Bai, B. (2017). Nonbinary LDPC coded spatial modulation. In Proceedings IEEE 86th Vehicular Technology Conference (VTC-Fall) (pp. 1–5) Toronto, Canada.

  18. Feng, D., Xu, H., Zhang, Q., & Bai, B. (2018). Nonbinary LDPC coded spatial modulation. IEEE Transactions on Wireless Communications, 17(4), 2786–2799.

    Article  Google Scholar 

  19. Hunter, T. E., & Nosratinia, A. (2006). Diversity through coded cooperation. IEEE Transactions on Wireless Communications, 5(2), 283–289.

    Article  Google Scholar 

  20. Alzubi, A. J., Alzubi, A. O., & Chen, M. T. (2014). Forward Error Correction Based On Algebraic-Geometric Theory. 1st ed, Springer, ISBN: 3319082922

  21. Laneman, J. N., Wornell, G. W., & Tse, D. N. (2001). An efficient protocol for realizing cooperative diversity in wireless networks. In 2001 IEEE International Symposium on Information Theory Proceedings (pp. 294).

  22. Avestimehr, A. S., Diggavi, S. N., & David, N. C. (2011). Wireless network information flow: A deterministic approach. IEEE Transactions on Information Theory, 57(4), 1872–1905.

    Article  MathSciNet  MATH  Google Scholar 

  23. Ejaz, S., & FengFan, Y. (2017). Jointly Optimized Reed-Muller Codes for Multilevel Multirelay Coded-Cooperative VANETS. IEEE Transactions on Vehicular Technology, 66(5), 4017–4028.

    Google Scholar 

  24. Zhang, S. W., Yang, F., & Tang, L. (2013). An LDPC coded cooperative MIMO scheme over Rayleigh fading channels with unknown channel state information. Journal of Zhejiang University Science C, 14(1), 30–41.

    Article  Google Scholar 

  25. Soliman, T., Yang, F., Ejaz, S., & Almslmany, A. (2017). Decode-and-forward polar coding scheme for receive diversity: a relay partially perfect retransmission for half-duplex wireless relay channels. IET Communications, 11(2), 185–191.

    Article  Google Scholar 

  26. Sholiyi, A., Alzubi, A. J., Alzubi, O. A., et al. (2015). Near capacity irregular turbo code. Indian Journal of Science and Technology, 8(23), 1–2.

    Article  Google Scholar 

  27. Zhang, S., Yang, F.-F., Tang, L., Ejaz, S., Lue, L., & Maharaj, B. T. (2015). Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding. Internation Journal of Electronics, 103(3), 384–405.

    Article  Google Scholar 

  28. Ejaz, S., FengFan, Y., & Soliman, T. H. (2015). Multi-Level construction of polar codes for half-duplex wireless coded-cooperative networks. Frequenz, 69(11–12), 509–517.

    Google Scholar 

  29. Ejaz, S., & Yang, F.-F. (2015). Turbo codes with modified code matched interleaver for coded-cooperation in half-duplex wireless relay networks. Frequenz, 69, 171–184.

    Google Scholar 

  30. Zhang, Z., & Duman, T. M. (2005). Capacity-approaching turbo coding and iterative decoding for relay channels. IEEE Transactions on Communications, 53(11), 1895–1905.

    Article  Google Scholar 

  31. Zhang, Z., & Duman, T. M. (2007). Capacity-approaching turbo coding for half-duplex relaying. IEEE Transactions on Communication, 55(10), 1895–1906.

    Article  Google Scholar 

  32. Feng, W., Yuan, J., & Vucetic, B. S. (2002). A code-matched interleaver design for turbo codes. IEEE Transaction on Communication, 50(6), 926–937.

    Article  Google Scholar 

  33. Divsalar, D., & Pollara, R. (1995). Turbo codes for PCS applications. Proceedings IEEE International Conference on Communications ICC ’95, (vol. 1, pp. 54-59).

  34. Mughal, S., Yang, F., Xu, H., et al. (2018). Coded cooperative spatial modulation based on multi-level construction of polar code. Telecommunication Systems. https://doi.org/10.1007/s11235-018-0485-6

    Article  Google Scholar 

  35. Mughal, S., Yang, F. F., & Hong Jun, X. S. (2018). Polar coded space-time coded spatial modulation based on Plotkin construction for coded cooperative networks. IET Communications, 12(3), 237–245.

    Article  Google Scholar 

  36. Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance analysis. IEEE Communications Letters, 12(8), 545–547.

    Article  Google Scholar 

  37. Koca, M., & Sari, H. (2012). Performance Analysis of Spatial Modulation over Correlated Fading Channels. 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). Canada: Quebec.

    Google Scholar 

  38. Niu, K., Chen, K., Lin, J., et al. (2014). Polar codes: Primary concepts and practical decoding algorithms. IEEE Communications Magazine, 52–7, 192–203.

    Article  Google Scholar 

  39. Chatzigeorgiou, I. A., Rodrigues, M. R. D., Wassell, I. J., et al. (2007). Comparison of convolutional and turbo coding for broadband FWA systems. IEEE Transactions on Broadcasting, 53–2, 494–503.

    Article  Google Scholar 

  40. Loyka, S. L. (2001). Channel capacity of MIMO architecture using the exponential correlation matrix. IEEE Communications Letters, 5(9), 369–371.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by National Natural Science Foundation of China under the Contract No. 61771241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Umar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, R., Yang, F., Xu, H. et al. Distributed turbo coded spatial modulation based on code matched interleaver for MIMO system. Wireless Netw 29, 1995–2013 (2023). https://doi.org/10.1007/s11276-023-03256-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03256-1

Keywords

Navigation