Skip to main content

Advertisement

Log in

Performance analysis of high speed hybrid PON-VLC for long-reach land-to-underwater applications

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Oceans and deep seas have always been a root of great paradox to mankind. The oceans, covering greater than 75% of the Earth surface, are unexplored and implausible to investigate because of diverse phenomena practices in the underwater medium. Under water communication plays a significant role in observation of water pollution, natural disaster surveillance, coastal securities naval tactical activities, marine life and to investigate the variations in the underwater environment. However, under water channel is ambiguous in nature and causes low bandwidth, security issue, low transmission range and cost limitations because of interaction with the water channel. In this regards, a high speed hybrid passive optical network (PON) and visible light communication (VLC) using red-green-blue light emitting diodes system for land-to-underwater applications has been proposed and investigated for the data transmission over a hybrid fiber-wireless link under different water types. Time and wavelength division multiplexing wavelength division multiplexing PON employing different optical code division multiple access codes offering data security to different under ocean connected devices with minimum energy consumption, is analysed. The results shows that shift zero cross-correlation code offers a faithful 100 km fiber length and 5 m VLC range at high data rate of 10 Gbps having 76 dB optical signal to noise ratio for 200 undersea devices in both downstream and upstream transmission. Moreover, undersea VLC range can be improved up to 10 m with blue LED. The mathematical analysis and comparative performance reveal the superiority of proposed system than existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Spagnolo, G. S., Cozzella, L., & Leccese, F. (2020). Underwater optical wireless communications: overview. Sensors, 20(8), 2261.

    Article  Google Scholar 

  2. Gill, H. S., & Singh, M. L. (2021). Performance evaluation of DVB-t image transmission over a MIMO OWC channel at 650 nm under varying turbulence regimes. Wireless Networks, 27(3), 1965–1979. https://doi.org/10.1007/s11276-021-02559-5

    Article  Google Scholar 

  3. Becvar, Z., Cheng, R. G., Charvat, M., & Mach, P. (2020). Mobility management for D2D communication combining radio frequency and visible light communications bands. Wireless Networks, 26(7), 5473–5484. https://doi.org/10.1007/s11276-020-02408-x

    Article  Google Scholar 

  4. Irawan, A., Abas, M. F., & Hasan, N. (2019). Robot local network using TQS protocol for land-to-underwater communications. Journal of Telecommunications and Information Technology, 1(2019), 23–30. https://doi.org/10.26636/jtit.2019.125818

    Article  Google Scholar 

  5. Abdulwahhab, A. W. (2022). Power consumption management in hybrid optical–Wireless access network. Optical Fiber Technology, 70, 102882. https://doi.org/10.1016/j.yofte.2022.102882

    Article  Google Scholar 

  6. Shao, Q., Zhao, Y., Chen, Y., & Gan, C. (2019). High-reliability grid architecture supporting discretionary and efficient communication between ONUs in metro-access optical network. International Journal of Communication Systems, 32(14), e4086. https://doi.org/10.1002/dac.4086

    Article  Google Scholar 

  7. Ali, A., Ali, K., & Shaikh, A. A. (2014). Energy and delay aware routing algorithm for fiber-wireless networks. Wireless Networks, 20(6), 1313–1320. https://doi.org/10.1007/s11276-013-0679-5

    Article  Google Scholar 

  8. Kumari, M., Sharma, R., & Sheetal, A. (2020). Performance analysis of high speed backward compatible TWDM-PON with hybrid WDM–OCDMA PON using different OCDMA codes. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-020-02597-x

    Article  Google Scholar 

  9. Butt, R. A., Idrus, S. M., Zulkifli, N., & Waqar Ashraf, M. (2018). Comprehensive bandwidth utilization and polling mechanism for XGPON. International Journal of Communication Systems, 31(3), e3475. https://doi.org/10.1002/dac.3475

    Article  Google Scholar 

  10. Morsy, M. A., & Alsayyari, A. S. (2020). Performance analysis of coherent BPSK-OCDMA wireless communication system. Wireless Networks, 26(6), 4491–4505. https://doi.org/10.1007/s11276-020-02355-7

    Article  Google Scholar 

  11. Vijayakumari, P., & Sumathi, M. (2019). Physical implementation of underwater optical wireless system using spatial mode laser sources with optimization of spatial matching components. Results in Physics, 14, 102503. https://doi.org/10.1016/j.rinp.2019.102503

    Article  Google Scholar 

  12. Liu, Y., Xu, H., Shang, D., Li, C., & Quan, X. (2019). An underwater image enhancement method for different illumination conditions based on color tone correction and fusion-based descattering. Sensors, 19(24), 5567. https://doi.org/10.3390/s19245567

    Article  Google Scholar 

  13. Jasman, F., & Green, R. J. (2013). Monte Carlo simulation for underwater optical wireless communications. Proceedings of the 2013 2nd International Workshop on Optical Wireless Communications, IWOW 2013, 113–117. https://doi.org/10.1109/IWOW.2013.6777789.

  14. Cox, W., & Muth, J. (2014). Simulating channel losses in an underwater optical communication system. Journal of the Optical Society of America A, 31(5), 920. https://doi.org/10.1364/josaa.31.000920

    Article  Google Scholar 

  15. Huang, A., Tao, L., & Jiang, Q. L. (2018). BER performance of underwater optical wireless MIMO communications with spatial modulation under weak turbulence. In 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans, OCEANS-Kobe 2018 (pp. 1–5). https://doi.org/10.1109/OCEANSKOBE.2018.8559096

  16. Campagnaro, F., Signori, A., & Zorzi, M. (2020). Wireless remote control for underwater vehicles. Journal of Marine Science and Engineering, 8(10), 1–32. https://doi.org/10.3390/JMSE8100736

    Article  Google Scholar 

  17. Doniec, M., Angermann, M., & Rus, D. (2013). An end-to-end signal strength model for underwater optical communications. IEEE Journal of Oceanic Engineering, 38(4), 743–757. https://doi.org/10.1109/JOE.2013.2278932

    Article  Google Scholar 

  18. Arnon, S., & Kedar, D. (2009). Non-line-of-sight underwater optical wireless communication network. Journal of the Optical Society of America A, 26(3), 530. https://doi.org/10.1364/josaa.26.000530

    Article  Google Scholar 

  19. Lu, I. C., & Liu, Y. L. (2018). 205 Mb/s LED-based underwater optical communication employing OFDM modulation. In 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans, OCEANS - Kobe 2018 (Vol. 1, pp. 1–4). IEEE. https://doi.org/10.1109/OCEANSKOBE.2018.8559430.

  20. Liu, X., Yi, S., Liu, R., Zheng, L., & Tian, P. (2017). 34.5 m Underwater optical wireless communication with 2.70 Gbps data rate based on a green laser with NRZ-OOK modulation. In 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China, SSLChina: IFWS 2017 (pp. 60–61). https://doi.org/10.1109/IFWS.2017.8245975.

  21. Wang, J., Lu, C., Li, S., & Xu, Z. (2019). 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode. Optics Express, 27(9), 12171. https://doi.org/10.1364/oe.27.012171

    Article  Google Scholar 

  22. Liu, W., Xu, Z., & Yang, L. (2015). SIMO detection schemes for underwater optical wireless communication under turbulence. Photonics Research, 3(3), 48. https://doi.org/10.1364/prj.3.000048

    Article  Google Scholar 

  23. Katz, M., & O’Brien, D. (2019). Exploiting novel concepts for visible light communications: From light-based IoT to living surfaces. Optik, 195, 163176. https://doi.org/10.1016/j.ijleo.2019.163176

    Article  Google Scholar 

  24. Furqan Ali, M., Nalin Jayakody, D. K., Ponnimbaduge Perera, T. D., Srinivasan, K., Sharma, A., & Krikidis, I. (2019). Underwater Communications: Recent Advances. In International Conference on Emerging Technologies of Information and Communications (ETIC).

  25. Luo, J., Fan, L., & Li, H. (2017). Indoor positioning systems based on visible light communication: state of the art. IEEE Communications Surveys and Tutorials, 19(4), 2871–2893. https://doi.org/10.1109/COMST.2017.2743228

    Article  Google Scholar 

  26. Kachhatiya, V., & Prince, S. (2016). Four-fold increase in users of time-wavelength division multiplexing (TWDM) passive optical network (PON) by delayed optical amplitude modulation (AM) upstream. Optical Fiber Technology, 32, 71–81.

    Article  Google Scholar 

  27. Mostafa, S., & Mohamed, A. E. A. (2017). Performance evaluation of SAC-OCDMA system in free space optics and optical fiber system based on different types of codes. Wireless Personal Communications, 96(2), 2843–2861. https://doi.org/10.1007/s11277-017-4327-8

    Article  Google Scholar 

  28. Rashidia, C. B. M., Aljunid, S. A., Ghani, F., Fadhil, H. A., & Anuar, M. S. (2013). New design of flexible cross correlation (FCC) Code for SAC-OCDMA system. Procedia Engineering, 53, 420–427. https://doi.org/10.1016/j.proeng.2013.02.055

    Article  Google Scholar 

  29. Wei, Z., Shalaby, H. M. H., & Ghafouri-Shiraz, H. (2001). Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems. Journal of Lightwave Technology, 19(9), 1274–1281.

    Article  Google Scholar 

  30. Cao, Y., & Gan, C. (2012). A scalable hybrid WDM/OCDMA-PON based on wavelength-locked RSOA technology. Optik, 123(2), 176–180. https://doi.org/10.1016/j.ijleo.2011.03.015

    Article  Google Scholar 

  31. Gan, C. Q., & Cao, Y. N. (2011). Novel architecture of WDM/OCDMA-PON based on SSFBG and wavelength re-modulation technology. Journal of Shanghai University, 15(2), 96–100. https://doi.org/10.1007/s11741-011-0700-3

    Article  Google Scholar 

  32. Kumari, M., Sharma, R., & Sheetal, A. (2021). A hybrid next-generation passive optical network and visible light communication for future hospital applications. Optik, 242, 166978. https://doi.org/10.1016/j.ijleo.2021.166978

    Article  Google Scholar 

  33. Arnon, S. (2010). Underwater optical wireless communication network. Optical Engineering, 49(1), 015001. https://doi.org/10.1117/1.3280288

    Article  Google Scholar 

  34. Spagnolo, G. S., Cozzella, L., & Leccese, F. (2020). A Brief Survey on Underwater Optical Wireless Communications. In MetroSea 2020 - TC19 International Workshop on Metrology for the Sea (pp. 79–84).

  35. Moench, W., & Loecklin, E. (2017). Measurement of Optical Signal to Noise Ratio in Coherent Systems using Polarization Multiplexed Transmission. In Optical Fiber Communication Conference (pp. 1–4).

  36. Abd, T. H., Aljunid, S. A., & Fadhil, H. A. (2011). A new technique for reduction the phase induced intensity noise in SAC-OCDMA systems. Journal of Optical Communications, 32(4), 263–267.

    Article  Google Scholar 

  37. El-Mottaleb, S. A. A., Fayed, H. A., Ismail, N. E., Aly, M. H., & Rizk, M. R. M. (2020). MDW and EDW/DDW codes with AND subtraction/single photodiode detection for high performance hybrid SAC-OCDMA/OFDM system. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-020-02357-x

    Article  Google Scholar 

  38. Samanta, S., Maity, G. K., & Mukhopadhyay, S. (2019). All-optical Walsh-Hadamard code Generation using. In 2019 Devices for Integrated Circuit (DevIC) (pp. 515–518).

  39. Kumawat, S., & Ravi Kumar, M. (2016). Generalized optical code construction for enhanced and modified double weight like codes without mapping for SAC-OCDMA systems. Optical Fiber Technology, 30, 72–80. https://doi.org/10.1016/j.yofte.2016.03.004

    Article  Google Scholar 

  40. Cantono, M., Mecozzi, A., Curri, V., & Gaudino, R. (2015). Optimal polarization launch for Raman depletion minimization in GPON and TWDM-PON coexistence. In Optical Fiber Communication Conference, OFC 2015.

  41. Mandal, G. C., Mukherjee, R., Das, B., & Patra, A. S. (2018). A full-duplex WDM hybrid fiber-wired/fiber-wireless/fiber-VLC/fiber-IVLC transmission system based on a self-injection locked quantum dash laser and a RSOA. Optics Communications, 427, 202–208. https://doi.org/10.1016/j.optcom.2018.06.048

    Article  Google Scholar 

  42. Cheng, N. (2015). Flexible TWDM PON with WDM overlay for converged services. Optical Fiber Technology, 26, 21–30.

    Article  Google Scholar 

  43. He, J., Dong, H., Deng, R., Shi, J., & Chen, L. (2016). WDM-CAP-PON integration with VLLC system based on optical frequency comb. Optics Communications, 374, 127–132. https://doi.org/10.1016/j.optcom.2016.04.059

    Article  Google Scholar 

  44. De Moura, U. C., Oliveira, J. R. F., Oliveira, J. C. R. F., & Cesar, A. C. (2013). EDFA adaptive gain control effect analysis over an amplifier cascade in a DWDM optical system. In SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings https://doi.org/10.1109/IMOC.2013.6646469.

  45. Lavrinovica, I., & Porins, J. (2015). Noise Figure Analysis of EDFA with different pumping configurations in 40 Gbit/s 8 channel DWDM transmission system. In Proceedings - 2015 Advances in Wireless and Optical Communications, RTUWO 2015.

Download references

Acknowledgements

The author is thankful to Chandigarh University, Mohali, India for providing opportunity to complete the work as effective.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

The author contributed to the study conception and design.

Corresponding author

Correspondence to Meet Kumari.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, M. Performance analysis of high speed hybrid PON-VLC for long-reach land-to-underwater applications. Wireless Netw 29, 1721–1735 (2023). https://doi.org/10.1007/s11276-022-03223-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03223-2

Keywords

Navigation