Skip to main content
Log in

A QoS-aware scheduling with node grouping for IEEE 802.11ah

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The recent IEEE 802.11ah amendment has proven to be suitable for supporting large-scale devices in Internet of Things (IoT). It is essential to provide a minimum level of Quality of Service (QoS) for critical applications such as industrial automation and healthcare. In this paper, we propose a QoS-aware Medium Access Control (MAC) layer solution to enhance network reliability and reduce critical traffic latency by an adaptive station grouping and a priority traffic scheduling scheme. First, a link layer representation of traffic categories as per the delay and reliability requirements is proposed. Second, a novel backoff size-based slot scheduling scheme for Restricted Access Window (RAW) is proposed to support QoS. Third, a grouping scheme is proposed to calculate the current traffic load and balance it among different RAW groups. Finally, a Markov-chain model is developed to study the throughput and latency behaviors of the traffic generated from the critical application. The proposed protocol shows significant delay improvement for priority traffic. The overall throughput performance improves up to 12.7% over the existing RAW grouping scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sethi, P., & Sarangi, S. R. (2017). Internet of Things: Architectures, protocols, and applications. Journal of Electrical and Computer Engineering. https://doi.org/10.1155/2017/9324035.

    Article  Google Scholar 

  2. IEEE Approved Draft Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment 2: Sub 1 GHz License Exempt Operation. (Jan 2016). IEEE P802.11ah/D10.0, Sep 2016 (pp. 1–660).

  3. Ming, Z., & Yan, M. (2012). A modeling and computational method for QoS in IoT. In International conference on software engineering and service science (ICSESS) (pp. 275–279). IEEE.

  4. Madueño, G. C., Stefanović, Č, & Popovski, P. (2016). Reliable and efficient access for alarm-initiated and regular M2M traffic in IEEE 802.11ah systems. IEEE Internet of Things Journal, 3(5), 673–682.

    Article  Google Scholar 

  5. IEEE802.16p. (2011). IEEE 802.16p Machine to Machine (M2M) Evaluation Methodology Document (EMD). IEEE 802.16 Broadband Wireless Access Working Group (802.16p). EMD 11/0005.

  6. Lei, X., & Rhee, S. H. (2019). A novel grouping mechanism for performance enhancement of sub-1 GHz wireless networks. In 2019 IEEE global communications conference (GLOBECOM) (pp. 1–5). IEEE.

  7. Tian, L., Khorov, E., Latré, S., & Famaey, J. (2017). Real-time station grouping under dynamic traffic for IEEE 802.11ah. Sensors, 17(7), 1559.

    Article  Google Scholar 

  8. Libório, P. P., Lam, C. T., Ng, B., Guidoni, D. L., Curado, M., & Villas, L. A. (2021). Airtime aware dynamic network slicing for heterogeneous IoT services in IEEE 802.11 ah. In 2021 IEEE wireless communications and networking conference (WCNC) (pp. 1–6). IEEE.

  9. Šljivo, A., Kerkhove, D., Tian, L., Famaey, J., Munteanu, A., Moerman, I., et al. (2018). Performance evaluation of IEEE 802.11ah networks with high-throughput bidirectional traffic. Sensors, 18(2), 325.

    Article  Google Scholar 

  10. Seferagić, A., Moerman, I., De Poorter, E., & Hoebeke, J. (2019). Evaluating the suitability of IEEE 802.11ah for low-latency time-critical control loops. IEEE Internet of Things Journal. 10.1109/JIOT.2019.2916579

  11. Zulfiker Ali, M., Mišić, J., & Mišić, V. B. (2019). Performance evaluation of heterogeneous IoT nodes with differentiated QoS in IEEE 802.11ah RAW mechanism. IEEE Transactions on Vehicular Technology, 68(4), 3905–3918.

    Article  Google Scholar 

  12. Mangold, S., Choi, S., May, P., Klein, O., Hiertz, G., & Stibor, L. (2002). IEEE 802.11 e wireless LAN for quality of service. Proceedings of European Wireless, 2, 32–39.

    Google Scholar 

  13. Ahmed, N., Rahman, H., Hussain, Md., et al. (2018). An IEEE 802.11 ah-based scalable network architecture for Internet of Things. Annals of Telecommunications, 73(7), 499–509.

    Article  Google Scholar 

  14. Choi, S., Del P., Javier, M., Stefan, et al. (2003). IEEE 802.11e contention-based channel access (EDCF) performance evaluation. In IEEE international conference on communications, 2003. ICC’03. (pp. 1151–1156, vol. 2). IEEE.

  15. Robinson, J. W., & Randhawa, T. S. (2004). Saturation throughput analysis of IEEE 802.11 e enhanced distributed coordination function. IEEE Journal on Selected Areas in Communications, 22(5), 917–928.

    Article  Google Scholar 

  16. Xiao, Y. (2003). Enhanced DCF of IEEE 802.11 e to support QoS. In 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003 (pp. 1291–1296, vol. 2). IEEE.

  17. Chen, X., Zhai, H., Tian, X., & Fang, Y. (2006). Supporting QoS in IEEE 802.11e wireless LANs. IEEE Transactions on Wireless Communications, 5(8), 2217–2227.

    Article  Google Scholar 

  18. Engelstad, P. E., & Østerbø, Olav N. (2005). Non-saturation and saturation analysis of IEEE 802.11 e EDCA with starvation prediction. In Proceedings of the 8th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems (pp. 224–233).

  19. Lei, X., & Rhee, S. H. (2017). Performance improvement of sub-1 GHz WLANs for future iot environments. Wireless Personal Communications, 93(4), 933–947.

    Article  Google Scholar 

  20. Hazmi, A., Badihi, B., Larmo, A., Torsner, J., Valkama, M., et al. (2015). Performance analysis of IoT-enabling IEEE 802.11ah technology and its RAW mechanism with non-cross slot boundary holding schemes. In International symposium on a world of wireless, mobile and multimedia Networks (WoWMoM) (pp. 1–6). IEEE.

  21. Charania, N. (2017). Delay and Energy Aware RAW Formation Scheme to Support Delay Sensitive M2M Traffic in IEEE 802.11ah Networks. Ph.D. thesis, Indian Institute of Technology Hyderabad.

  22. Ahmed, N., De, D., & Hussain, M. I. (2018). A QoS-aware MAC protocol for IEEE 802.11ah-based Internet of Things. In 15th international conference on wireless and optical communications networks (WOCN) (pp. 1–5). IEEE.

  23. Park, C. W., Hwang, D., & Lee, T.-J. (2014). Enhancement of IEEE 802.11ah MAC for M2M communications. IEEE Communications Letters, 18(7), 1151–1154.

    Article  Google Scholar 

  24. Zhao, Y., Yilmaz, O. N. C., & Larmo, A. (2015). Optimizing M2M energy efficiency in IEEE 802.11ah. In Globecom Workshops (GC Wkshps) (pp. 1–6). IEEE.

  25. Ma, X., Xu, H., Gao, H., Bian, M., & Hussain, W. (2022). Real-time virtual machine scheduling in industry IoT network: A reinforcement learning method. IEEE Transactions on Industrial Informatics, 2, 1–10.

    Google Scholar 

  26. Ma, X., Huahu, X., Gao, H., & Bian, M. (2021). Real-time multiple-workflow scheduling in cloud environments. IEEE Transactions on Network and Service Management, 18(4), 4002–4018.

    Article  Google Scholar 

  27. Charania, N. F., Giluka, M. K., Tamma, B. R., & Franklin, A. (2017). DEARF: Delay and Energy Aware RAW Formation Scheme to Support Delay Sensitive M2M Traffic in IEEE 802.11ah Networks. arXiv:1709.03723.

  28. Kai, C., Zhang, J., Zhang, X., & Huang, W. (2019). Energy-efficient sensor grouping for IEEE 802.11ah networks with max-min fairness guarantees. IEEE Access, 7, 102284–102294.

    Article  Google Scholar 

  29. Chandrasekaran, Balakrishnan. (2009). Survey of network traffic models. Waschington University in St. Louis CSE (p. 567).

  30. Dehbi, Y., Benaboud, H., & Mikou, N. (2013). A geometric backoff time distribution of IEEE 802.11 DCF: An analytical study. International Journal of Communication Networks and Information Security (IJCNIS), 5(3), 192–200.

    Google Scholar 

  31. Malone, D., Duffy, K., & Leith, D. (2007). Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transactions on Networking (TON), 15(1), 159–172.

    Article  Google Scholar 

  32. Dhananjay, A., & Ruan, L. (2008). PigWin: Meaningful load estimation in IEEE 802.11-based wireless LANS. In IEEE international conference on communications (pp. 2541–2546). IEEE.

  33. Wang, Y., Li, Y., Chai, K.K., Chen, Y., & Schormans, J.. (2015). Energy-aware adaptive restricted access window for IEEE 802.11ah based Smart Grid networks. In International conference on smart grid communications (SmartGridComm) (pp. 581–586). IEEE.

  34. Sthapit, P., & Pyun, J.-Y. (2017). Station grouping strategy for minimizing association delay in IEEE 802.11 ah. IEICE Transactions on Communications, 100(8), 1419–1427.

    Article  Google Scholar 

  35. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  36. Yoon, S.-G., Seo, J.-O., & Bahk, S. (2016). Regrouping algorithm to alleviate the hidden node problem in 802.11ah networks. Computer Networks, 105, 22–32.

    Article  Google Scholar 

  37. Xiao, Y. (2003). Backoff-based priority schemes for IEEE 802.11. In ICC’03. IEEE international conference on communications (pp. 1568–1572, vol. 3). IEEE.

  38. Raeesi, O., Pirskanen, J., Hazmi, A., Levanen, T., & Valkama, M. (2014). Performance evaluation of IEEE 802.11ah and its Restricted Access Window mechanism. In International conference on communications workshops (ICC) (pp. 460–466). IEEE.

  39. What is ns-3. https://www.nsnam.org/overview/what-is-ns-3/. online.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurzaman Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Hussain, M.I. A QoS-aware scheduling with node grouping for IEEE 802.11ah. Wireless Netw 29, 1799–1814 (2023). https://doi.org/10.1007/s11276-022-03206-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03206-3

Keywords

Navigation