Skip to main content

Advertisement

Log in

NOMA for 5G and beyond: literature review and novel trends

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

A Correction to this article was published on 28 December 2022

This article has been updated

Abstract

The non-orthogonal multiple access (NOMA) system is considered an important technology that enables the fifth-generation (5G) wireless systems and beyond to satisfy different requirements such as high efficiency, massive networks, sophisticated optimization, and steady quality. Also, the NOMA scheme provides advancements and attractive characteristics such as low latency, ultra-dense service, great fairness, innovative waveform architecture, efficient bandwidth utilization, and massive device connectivity compared to the earliest multiple access schemes. Therefore, the NOMA system necessitates an efficient resource allocation technique such as user pairing (UP) and power allocation (PA) schemes to achieve optimal performance. So, in this paper, we discuss the significance of resource allocation in NOMA in 5G networks and beyond in-depth. As a result, firstly, we review the classification of multiple access schemes, the various types of NOMA techniques, and the characteristics of NOMA. Then, the paper analyzes the issue of resource allocation by classifying the different resource allocation schemes in 5G. Further, a summary of the solutions to the current resource allocation issues are reviewed. Finally, we suggest future research challenges on which to focus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Change history

References

  1. Fourati, H., Maaloul, R., & Chaari, L. (2021). A survey of 5G network systems: Challenges and machine learning approaches. International Journal of Machine Learning and Cybernetics, 12, 385–431. https://doi.org/10.1007/s13042-020-01178-4

    Article  Google Scholar 

  2. Le, L. B., Lau, V., Jorswieck, E., et al. (2015). Enabling 5G mobile wireless technologies. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-015-0452-9

    Article  Google Scholar 

  3. Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication’. Physical Communication, 18, 64–84. https://doi.org/10.1016/j.phycom.2015.10.006

    Article  Google Scholar 

  4. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232. https://doi.org/10.1109/ACCESS.2015.2461602

    Article  Google Scholar 

  5. Shaik, N., & Malik, P. (2021). A comprehensive survey 5G wireless communication systems: Open issues, research challenges, channel estimation, multi carrier modulation and 5G applications. Multimedia Tools and Applications, 80, 28789–28827. https://doi.org/10.1007/s11042-021-11128-z

    Article  Google Scholar 

  6. Budhiraja, I., et al. (2021). A systematic review on NOMA variants for 5G and beyond. IEEE Access, 9, 85573–85644. https://doi.org/10.1109/ACCESS.2021.3081601

    Article  Google Scholar 

  7. Marzetta, T. (2010). Non cooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600. https://doi.org/10.1109/TWC.2010.092810.091092

    Article  Google Scholar 

  8. Zhu, J., Ng, D. W. K., Wang, N., Schober, R., & Bhargava, V. K. (2017). Analysis and design of secure massive MIMO systems in the presence of hardware impairments. IEEE Transactions on Wireless Communications, 16(3), 2001–2016. https://doi.org/10.1109/TWC.2017.2659724

    Article  Google Scholar 

  9. Pi, Z., & Khan, F. (2011). An introduction to millimeter wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107. https://doi.org/10.1109/MCOM.2011.5783993

    Article  Google Scholar 

  10. Rappaport, T., Sun, S., Mayzus, R., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349. https://doi.org/10.1109/ACCESS.2013.2260813

    Article  Google Scholar 

  11. Andrews, J., Claussen, H., Dohler, M., Rangan, S., & Reed, M. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508. https://doi.org/10.1109/JSAC.2012.120401

    Article  Google Scholar 

  12. Andrews, J. (2013). Seven ways that hetnets are a cellular paradigm shift. IEEE Communications Magazine, 51(3), 136–144. https://doi.org/10.1109/MCOM.2013.6476878

    Article  Google Scholar 

  13. Ramasamy, D., Ganti, R., & Madhow, U. (2013) On the capacity of pico-cellular networks. In IEEE International Symposium on Information Theory, Istanbul, Turkey, pp. 241–245. Doi: https://doi.org/10.1109/ISIT.2013.6620224.

  14. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013) “Non-orthogonal multiple access (NOMA) for cellular future radio access.” In 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2–5 June 2013, pp. 1-5, Doi: https://doi.org/10.1109/VTCSpring.2013.6692652.

  15. Zhiqiang, W., Jinhong, Y., Ng, D. W. K., Elkashlan, M., & Zhiguo, D. (2016). A survey of downlink non⁃orthogonal multiple access for 5g wireless communication networks. ZTE Communication. https://doi.org/10.3969/j.issn.1673-5188

    Article  Google Scholar 

  16. Liang, W., Zhiguo Ding, H., & Poor, V. (2017). Non-orthogonal multiple access (NOMA) for 5G systems. In V. W. S. Wong, R. Schober, D. W. K. Ng, & L. C. Wang (Eds.), Key Technologies for 5G Wireless Systems (pp. 109–132). Cambridge Univ. Press.

    Chapter  Google Scholar 

  17. Islam, S. M. R., Zeng, M., Dobre, O. A., & Kwak, K. (2019). Non-orthogonal multiple access (noma): how it meets 5g and beyond. In R. Tafazolli, C.-L. Wang, & P. Chatzimisios (Eds.), Wiley 5G Ref (pp. 1–28). Wiley. https://doi.org/10.1002/9781119471509.w5GRef032

    Chapter  Google Scholar 

  18. Nira, & Shukla, A. (2020). Optimal multiple access scheme for 5g and beyond communication network. In T. Senjyu, P. N. Mahalle, T. Perumal, & A. Joshi (Eds.), International conference on Information and Communication Technology for Intelligent Systems. Springer. https://doi.org/10.1007/978-981-15-7078-0_5

    Chapter  Google Scholar 

  19. Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K. (2017). Power-domain non-orthogonal multiple access (noma) in 5g systems: potentials and challenges. IEEE Communication Surveys & Tutorials, 19(2), 721–742. https://doi.org/10.1109/COMST.2016.2621116

    Article  Google Scholar 

  20. Dai, L., Wang, B., Yuan, Y., Han, S., Chih-lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communication Magazine, 53(9), 74–81. https://doi.org/10.1109/MCOM.2015.7263349

    Article  Google Scholar 

  21. Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181–2195. https://doi.org/10.1109/JSAC.2017.2725519

    Article  Google Scholar 

  22. Aldababsa, M., Toka, M., Gökçeli, S., Kurt, G. K., & Kucur, O. (2018). “A tutorial on nonorthogonal multiple access for 5G and beyond.” Wireless Communications and Mobile Computing, 5, 1–24. https://doi.org/10.1155/2018/9713450

    Article  Google Scholar 

  23. Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., & Hanzo, L. (2018). A survey of non-orthogonal multiple access for 5G. IEEE Communication Surveys & Tutorials, 20(3), 2294–2323. https://doi.org/10.1109/COMST.2018.2835558

    Article  Google Scholar 

  24. Aldababsa, M., Toka, M., Gokceli, S., Kurt, G. K., & Kucur, O. (2018). A tutorial on non-orthogonal multiple access for 5G and beyond. Wireless Communication Mobile Computing. https://doi.org/10.1155/2018/9713450

    Article  Google Scholar 

  25. Arachchillage, U. S. S. S., Jayakody, D. N. K., Biswash S. K., & Dinis, R. (2018). “Recent advances and future research challenges in non-orthogonal multiple access for 5G networks.” In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal. pp. 1–6, Doi: https://doi.org/10.1109/VTCSpring.2018.8417843

  26. Vaezi, M., Ding, Z., & Vincent Poor, H. (Eds.). (2019). Multiple access techniques for 5G wireless networks and beyond. Springer. https://doi.org/10.1007/978-3-319-92090-0

    Book  Google Scholar 

  27. Nguyen, H. V., Kim, H. M., Kang, G.-M., Nguyen, K.-H., Bui, V.-P., & Shin, O.-S. (2020). A survey on non-orthogonal multiple access: From the perspective of spectral efficiency and energy efficiency. Energies, 13(16), 4106. https://doi.org/10.3390/en13164106

    Article  Google Scholar 

  28. Choi, J. H. (2014). Non-orthogonal multiple access in downlink coordinated two-point systems. IEEE Communications Letters, 18(2), 313–316. https://doi.org/10.1109/LCOMM.2013.123113.132450

    Article  Google Scholar 

  29. Al-Imari, M., Xiao, P., Imran, M. A., & Tafazolli, R. (2014). “Uplink non-orthogonal multiple access for 5G wireless networks,” In 2014 11th International Symposium on Wireless Communications Systems (ISWCS) pp. 781–785, Doi: https://doi.org/10.1109/ISWCS.2014.6933459.

  30. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465. https://doi.org/10.1109/LCOMM.2015.2441064

    Article  Google Scholar 

  31. Mathur, H., & Deepa, T. (2021). A survey on advanced multiple access techniques for 5G and beyond wireless communications. Wireless Personal Communications, 118(2), 1775–1792. https://doi.org/10.1007/s11277-021-08115-w

    Article  Google Scholar 

  32. Makki, B., Chitti, K., Behravan, A., & Alouini, M.-S. (2020). A survey of NOMA: Current status and open research challenges. IEEE Open Journal of the Communications Society, 1, 179–189. https://doi.org/10.1109/OJCOMS.2020.2969899

    Article  Google Scholar 

  33. Huo, Y., Dong, X., Xu, W., & Yuen, M. (2019). Enabling multi-functional 5G and beyond user equipment: A survey and tutorial. IEEE Access, 7, 116975–117008. https://doi.org/10.1109/ACCESS.2019.2936291

    Article  Google Scholar 

  34. Vaezi, M., Ding, Z., & Poor, H. V. (Eds.). (2019). Multiple access techniques for 5G wireless networks and beyond. Berlin: Springer. https://doi.org/10.1007/978-3-319-92090-0

    Book  Google Scholar 

  35. A. Kumar, K. Kumar, M. S. Gupta, and S. Kumar, (2019). “A survey on NOMA techniques for 5G scenario.” In Proceedings of the International Conference on Advances in Electronics, Electrical & Computational Intelligence (ICAEEC). Doi: https://doi.org/10.2139/ssrn.3573579.

  36. Hussain, M., & Rasheed, H. (2020). Nonorthogonal multiple access for next-generation mobile networks: a technical aspect for research direction. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2020/8845371

    Article  Google Scholar 

  37. Akbar, A., Jangsher, S., & Bhatti, F. A. (2021). NOMA and 5G emerging technologies: A survey on issues and solution techniques. Computer Networks. https://doi.org/10.1016/j.comnet.2021.107950

    Article  Google Scholar 

  38. Dai, X., Zhang, Z., Bai, B., Chen, S., & Sun, S. (2018). Pattern division multiple access: A new multiple access technology for 5G. IEEE Wireless Communications, 25(2), 54–60. https://doi.org/10.1109/MWC.2018.1700084

    Article  Google Scholar 

  39. Zeng, J., Kong, D., Su, X., Rong, L., & Xu, X. (2016) “On the performance of pattern division multiple access in 5G systems,” In 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), Yangzhou, China. 13–15 Oct. 2016, pp. 1–5. Doi: https://doi.org/10.1109/WCSP.2016.7752716.

  40. Wang, L., Xu, L., Chen, S., & Hanzo, L. (2009). Three-stage irregular convolutional coded iterative center-shifting K-best sphere detection for soft-decision SDMA–OFDM. IEEE Transactions on Vehicular Technology, 58(4), 2103–2109. https://doi.org/10.1109/TVT.2008.2007465

    Article  Google Scholar 

  41. Zhang, J., Chen, S., Mu, X., & Hanzo, L. (2011). Joint channel estimation and multiuser detection for SDMA/OFDM based on dual repeated weighted boosting search. IEEE Transactions on Vehicular Technology, 60(7), 3265–3275. https://doi.org/10.1109/TVT.2011.2161356

    Article  Google Scholar 

  42. Zhang, J., Chen, S., Mu, X., & Hanzo, L. (2012). Turbo multi-user detection for OFDM/SDMA systems relying on differential evolution aided iterative channel estimation. IEEE Transactions on Communications, 60(6), 1621–1633. https://doi.org/10.1109/TCOMM.2012.032312.110400

    Article  Google Scholar 

  43. Zhang, J., Chen, S., Mu, X., & Hanzo, L. (2014). Evolutionary-algorithm-assisted joint channel estimation and turbo multiuser detection/decoding for OFDM/SDMA. IEEE Transactions on Vehicular Technology, 63(3), 1204–1222. https://doi.org/10.1109/TVT.2013.2283069

    Article  Google Scholar 

  44. Bagadi, K. P., Annepu, V., & Das, S. (2016). Recent trends in multiuser detection techniques for SDMA-OFDM communication system. Physical. Communication., 20, 93–108. https://doi.org/10.1016/j.phycom.2016.07.001

    Article  Google Scholar 

  45. Huang, J., Peng, K., Pan, C., Yang, F., & Jin, H. (2014). Scalable video broadcasting using bit division multiplexing. IEEE Transactions on Broadcasting, 60(4), 701–706. https://doi.org/10.1109/TBC.2014.2361471

    Article  Google Scholar 

  46. Elsaraf, Z., Ahmed, A., Khan, F. A., & Ahmed, Q. Z. (2021). Cooperative non-orthogonal multiple access for wireless communication networks by exploiting the EXIT chart analysis. Wireless Communications Network, 79, 2021. https://doi.org/10.1186/s13638-021-01961-z

    Article  Google Scholar 

  47. Yuan, Z., Yu, G., Li, W., Yuan, Y., Wang, X., & Xu, J. (2016). “Multi-user shared access for internet of things.” In 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15-18 May 2016, pp. 1-5, Doi: https://doi.org/10.1109/VTCSpring.2016.7504361.

  48. Nikopour, H., & Baligh, H. “Sparse code multiple access.” In 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, 8-11 Sept. 2013, pp. 332-336, Doi: https://doi.org/10.1109/PIMRC.2013.6666156.

  49. Dai, X. et al., (2014). “Successive interference cancelation amenable multiple access (SAMA) for future wireless communications.” In 2014 IEEE International Conference on Communication Systems, Macau, China, 19–21 Nov. 2014, pp. 222–226. Doi: https://doi.org/10.1109/ICCS.2014.7024798.

  50. Hoshyar, R., Wathan, F. P., & Tafazolli, R. (2008). Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Transactions on Signal Processing, 56(4), 1616–1626. https://doi.org/10.1109/TSP.2007.909320

    Article  MathSciNet  MATH  Google Scholar 

  51. van de Beek, J., & Popovic, B. M. (2009). “Multiple access with low-density signatures.” In GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 Nov.-4 Dec. 2009, pp. 1–6. Doi: https://doi.org/10.1109/GLOCOM.2009.5425243.

  52. Hoshyar, R., Razavi, R., & Al-Imari, M. (2010). “LDS-OFDM an Efficient multiple access technique.” In 2010 IEEE 71st Vehicular Technology Conference, Taipei, Taiwan, 16-19 May 2010, pp. 1-5. Doi: https://doi.org/10.1109/VETECS.2010.5493941.

  53. Al-Imari, M., Imran, M. A., Tafazolli, R., & Chen, D. (2011). “Subcarrier and power allocation for LDS-OFDM system.” In 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest, Hungary, 15-18 May 2011, pp. 1-5. Doi: https://doi.org/10.1109/VETECS.2011.5956554.

  54. Razavi, R., Hoshyar, R., Imran, M. A., & Wang, Y. (2011). Information theoretic analysis of LDS scheme. IEEE Communications Letters, 15(8), 798–800. https://doi.org/10.1109/LCOMM.2011.061011.102098

    Article  Google Scholar 

  55. AL-Imari, M., Imran, M. A., & Tafazolli, R. (2012). “Low density spreading for next generation multicarrier cellular systems.” In 2012 International Conference on Future Communication Networks, Baghdad, Iraq, 2–5 April 2012, pp. 52–57. Doi: https://doi.org/10.1109/ICFCN.2012.6206872.

  56. AL-Imari, M., Imran, M. A., Tafazolli, R., & Chen, D. (2012) “Performance evaluation of low density spreading multiple access,” in 2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC), Limassol, Cyprus, 27–31 Aug. 2012, pp. 383–388. Doi: https://doi.org/10.1109/IWCMC.2012.6314235.

  57. Ismail, S., D’Andreagiovanni, F., Lakhlef, H. & Imine, Y. (2020). “Recent advances on 5G resource allocation problem using PD-NOMA.” In 2020 International Symposium on Networks, Computers and Communications (ISNCC), Montreal, QC, Canada, 20-22 Oct. 2020, pp. 1-7. Doi: https://doi.org/10.1109/ISNCC49221.2020.9297208.

  58. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., & Poor, H. V. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine. https://doi.org/10.1109/MCOM.2017.1500657CM

    Article  Google Scholar 

  59. Di, B., Song, L., & Li, Y. (2016). Sub-channel assignment, power allocation, and user scheduling for non-orthogonal multiple access networks. IEEE Transaction on Wireless Communication, 15(11), 7686–7698. https://doi.org/10.1109/TWC.2016.2606100

    Article  Google Scholar 

  60. Zhang, R., & Hanzo, L. (2011). A unified treatment of superposition coding aided communications: Theory and practice. IEEE Communications on Surveys & Tutorials. https://doi.org/10.1109/SURV.2011.061610.00102

    Article  Google Scholar 

  61. Chen, R., Shu, F., Lei, K., Wang, J., & Zhang, L. (2021). User clustering and power allocation for energy efficiency maximization in downlink non-orthogonal multiple access systems. Applied Science. https://doi.org/10.3390/app11020716

    Article  Google Scholar 

  62. Fang, F., Zhang, H., Cheng, J., & Leung, V. C. M. (2016). Energy-efficient resource allocation for downlink non-orthogonal multiple access network. IEEE Transactions on Communications, 64(9), 3722–3732. https://doi.org/10.1109/TCOMM.2016.2594759

    Article  Google Scholar 

  63. Zhu, L., Zhang, J., Xiao, Z., Cao, X., & Wu, D. O. (2019). Optimal user pairing for downlink non-orthogonal multiple access (NOMA). IEEE Wireless Communication Letters, 8(2), 328–331. https://doi.org/10.1109/LWC.2018.2853741

    Article  Google Scholar 

  64. Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., & Nakamura, T. (2013). “Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access.” In 2013 International Symposium on Intelligent Signal Processing and Communication Systems, Naha, Japan, 12-15 Nov. 2013, pp. 770-774. Doi:https://doi.org/10.1109/ISPACS.2013.6704653

  65. Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transaction on Communication, E98B(3), 403–414. https://doi.org/10.1587/transcom.E98.B.403

    Article  Google Scholar 

  66. Ding, Z., Yang, Z., Fan, P., & Poor, H. (2014). On the performance of non-orthogonal multiple access in 5g systems with randomly deployed users. IEEE Signal Processing Letters, 21(12), 1501–1505. https://doi.org/10.1109/LSP.2014.2343971

    Article  Google Scholar 

  67. Hojeij, M., Farah, J., Nour, C. A., et al. (2016). New optimal and suboptimal resource allocation techniques for downlink nonorthogonal multiple access. Wireless Personal Communication, 87, 837–867. https://doi.org/10.1007/s11277-015-2629-2

    Article  Google Scholar 

  68. Di, B., Bayat, S., Song, L., & Li, Y. (2015). “Radio resource allocation for downlink non-orthogonal multiple access (NOMA) networks using matching theory.” In 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6-10 Dec. 2015, pp. 1-6. Doi: https://doi.org/10.1109/GLOCOM.2015.7417643.

  69. Saraereh, O. A., Alsaraira, A., Khan, I., & Uthansakul, P. (2019). An efficient resource allocation algorithm for OFDM-Based NOMA in 5G systems. Electronics. https://doi.org/10.3390/electronics8121399

    Article  Google Scholar 

  70. Benjebbovu, A., Li, A., Saito, Y., Kishiyama, Y., Harada, A., & Nakamura, T. (2013). “System-level performance of downlink NOMA for future LTE enhancements.” In 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9-13 Dec. 2013, pp. 66-70. Doi: https://doi.org/10.1109/GLOCOMW.2013.6824963.

  71. Hojeij, M. R., Farah, J., Nour, C. A., & Douillard, C. (2016). New optimal and suboptimal resource allocation techniques for downlink non-orthogonal multiple access. Wireless Personal Communication, 87(3), 837–867. https://doi.org/10.1007/s11277-015-2629-2

    Article  Google Scholar 

  72. Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Non-orthogonal multiple access for 5G and beyond. Proceedings of the IEEE, 105(12), 2347–2381. https://doi.org/10.1109/JPROC.2017.2768666

    Article  Google Scholar 

  73. Shin, W., Vaezi, M., Lee, B., Love, D. J., Lee, J., & Poor, H. V. (2017). Non-orthogonal multiple access in multi-cell networks: Theory, performance, and practical challenges. IEEE Communications Magazine, 55(10), 176–183. https://doi.org/10.1109/MCOM.2017.1601065

    Article  Google Scholar 

  74. Basharat, M., Ejaz, W., Naeem, M., Khattak, A., & Anpalagan, A. (2018). A survey and taxonomy on nonorthogonal multiple-access schemes for 5G networks. Transactions on Emerging Telecommunications Technologies. https://doi.org/10.1002/ett.3202

    Article  Google Scholar 

  75. Maraqa, O., Rajasekaran, A. S., Al-Ahmadi, S., Yanikomeroglu, H., & Sait, S. M. (2020). A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks. IEEE Communications Surveys & Tutorials, 22(4), 2192–2235. https://doi.org/10.1109/COMST.2020.3013514

    Article  Google Scholar 

  76. Ding, Z., Fan, P., & Poor, H. V. (2016). Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Transaction on Vehicular Technology, 65(8), 6010–6023. https://doi.org/10.1109/TVT.2015.2480766

    Article  Google Scholar 

  77. Zhang, H., Zhang, D., Meng, W., & Li, C. (2016). User pairing algorithm with SIC in non-orthogonal multiple access system. IEEE International Conference on Communications (ICC), 2016, 1–6. https://doi.org/10.1109/ICC.2016.7511620

    Article  Google Scholar 

  78. Shahab, M. B., et al. (2016). User pairing schemes for capacity maximization in non-orthogonal multiple access systems. Wireless Communication and Mobile Computing, 16(17), 2884–2894. https://doi.org/10.1002/wcm.2736

    Article  Google Scholar 

  79. Shahab, M. B., Kader, M. F., & Shin, S. Y. (2016). A virtual user pairing scheme to optimally utilize the spectrum of unpaired users in non-orthogonal multiple access. IEEE Signal Processing Letters, 23(12), 1766–1770. https://doi.org/10.1109/LSP.2016.2619371

    Article  Google Scholar 

  80. Abd-Elnaby, M., Sedhom, G. G., Messiha, N. W., & Elwekeil, M. (2021). Efficient user pairing algorithm for enhancement of spectral efficiency and interference cancelation in downlink NOMA system. Wireless Network, 27, 1035–1047. https://doi.org/10.1007/s11276-020-02495-w

    Article  Google Scholar 

  81. Liang, W., Ding, Z., Li, Y., & Song, L. (2017). User pairing for downlink non-orthogonal multiple access networks using matching algorithm. IEEE Transaction on Communications, 65(12), 5319–5332. https://doi.org/10.1109/TCOMM.2017.2744640

    Article  Google Scholar 

  82. Zhu, J., Wang, J., Huang, Y., He, S., You, X., & Yang, L. (2017). On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE Journal on Selected Areas in Communications, 35(12), 2744–2757. https://doi.org/10.1109/JSAC.2017.2725618

    Article  Google Scholar 

  83. Pliatsios, D., & Sarigiannidis, P. (2019). Resource allocation combining heuristic matching and particle swarm optimization approaches: The case of downlink non-orthogonal multiple access. Information, 10(336), 2019. https://doi.org/10.3390/info10110336

    Article  Google Scholar 

  84. Islam, S. M. R., Zeng, M., Dobre, O. A., & Kwak, K. (2018). Resource allocation for downlink NOMA systems: Key techniques and open issues. IEEE Wireless Communications, 25(2), 40–47. https://doi.org/10.1109/MWC.2018.1700099

    Article  Google Scholar 

  85. Hojeij, M. R., Abdel Nour, C., Farah, J., & Douillard, C. (2018). Weighted proportional fair scheduling for downlink nonorthogonal multiple access. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2018/5642765

    Article  Google Scholar 

  86. Bui, V., Nguyen, P. X., Nguyen, H. V., Nguyen, V., & Shin, O. (2019). optimal user pairing for achieving rate fairness in downlink NOMA networks. International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2019, 575–578. https://doi.org/10.1109/ICAIIC.2019.8669061

    Article  Google Scholar 

  87. Muhammed, A. J., Ma, Z., Diamantoulakis, P. D., Li, L., & Karagiannidis, G. K. (2019). Energy-efficient resource allocation in multicarrier NOMA systems with fairness. IEEE Transactions on Communications, 67(12), 8639–8654. https://doi.org/10.1109/TCOMM.2019.2938963

    Article  Google Scholar 

  88. Liu, H., Tsiftsis, T. A., Kim, K. J., Kwak, K. S., & Poor, H. V. (2020). Rate splitting for uplink NOMA with enhanced fairness and outage performance. IEEE Transactions on Wireless Communications, 19(7), 4657–4670. https://doi.org/10.1109/TWC.2020.2985970

    Article  Google Scholar 

  89. Abd-Elnaby, M., Sedhom, G. G., & Elwekeil, M. (2021). Subcarrier-user assignment in downlink NOMA for improving spectral efficiency and fairness. IEEE Access, 9, 5273–5284. https://doi.org/10.1109/Access.2020.3047985

    Article  Google Scholar 

  90. El-Sayed, M. M., Ibrahim, A. S., & Khairy, M. M. (2016). Power allocation strategies for non-orthogonal multiple access. International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT), 2016, 1–6. https://doi.org/10.1109/MoWNet.2016.7496633

    Article  Google Scholar 

  91. Abd-Elnaby, M. (2021). Capacity and fairness maximization-based resource allocation for downlink NOMA networks. Computers, Materials & Continua, 69(1), 521–537. https://doi.org/10.32604/cmc.2021.018351

    Article  Google Scholar 

  92. Wu, G., et al. (2021). A novel low-complexity power allocation algorithm based on the NOMA system in a low-speed environment. Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2021.07.00

    Article  Google Scholar 

  93. Alghasmari, W. F., & Nassef, L. (2021). Optimal power allocation in downlink non-orthogonal multiple access (NOMA). International Journal of Advanced Computer Science and Applications, 12(2), 318–325. https://doi.org/10.14569/IJACSA.2021.0120240

    Article  Google Scholar 

  94. Hojeij, M., Abdel Nour, C., Farah, J., & Douillard, C. (2017). Waterfilling-based proportional fairness scheduler for downlink non-orthogonal multiple access. IEEE Wireless Communications Letters, 6(2), 230–233. https://doi.org/10.1109/LWC.2017.2665470

    Article  Google Scholar 

  95. Wang, C., Chen, J., & Chen, Y. (2016). Power allocation for a downlink non-orthogonal multiple access system. IEEE Wireless Communications Letters, 5(5), 532–535. https://doi.org/10.1109/LWC.2016.2598833

    Article  Google Scholar 

  96. Xu, P., & Cumanan, K. (2017). Optimal power allocation scheme for non-orthogonal multiple access with α-fairness. IEEE Journal on Selected Areas in Communications, 35(10), 2357–2369. https://doi.org/10.1109/JSAC.2017.2729780

    Article  Google Scholar 

  97. Shahab, M. B., Kader, M. F., & Shin, S. Y. (2016). On the power allocation of non-orthogonal multiple access for 5G wireless networks. International Conference on Open-Source Systems & Technologies (ICOSST), 2016, 89–94. https://doi.org/10.1109/ICOSST.2016.7838583

    Article  Google Scholar 

  98. Ma, X., Juan, W., Zhang, Z., Zhang, Z., Wang, X., Chai, X., Dai, L., & Dai, X. (2018). Power allocation for downlink of non-orthogonal multiple access system via genetic algorithm. In K. Long, V. C. M. Leung, H. Zhang, Z. Feng, Y. Li, & Z. Zhang (Eds.), International conference on 5G for Future Wireless Networks (pp. 459–470). Springer International Publishing. https://doi.org/10.1007/978-3-319-72823-0_43

    Chapter  Google Scholar 

  99. Pliatsios, D., & Sarigiannidis, P. (2019). “Power allocation in downlink non-orthogonal multiple access IoT-enabled systems: a particle swarm optimization approach.” In 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 416–422, 2019, Doi: https://doi.org/10.1109/DCOSS.2019.00085.

  100. Wang, J., Peng, Q., Huang, Y., Wang, H., & You, X. (2017). Convexity of weighted sum rate maximization in NOMA systems. IEEE Signal Processing Letters, 24(9), 1323–1327. https://doi.org/10.1109/LSP.2017.2722546

    Article  Google Scholar 

  101. Chen, R., Wang, X., & Xu, Y. (2018). “Power allocation optimization in MC-NOMA systems for maximizing weighted sum-rate.” In 2018 24th Asia-Pacific Conference on Communications (APCC), Ningbo, China, 12–14 Nov. 2018, pp. 392–396, Doi: https://doi.org/10.1109/APCC.2018.8633549.

  102. Zamani, M. R., Eslami, M., Khorramizadeh, M., & Ding, Z. (2019). Energy-efficient power allocation for NOMA with imperfect CSI. IEEE Transactions on Vehicular Technology, 68(1), 1009–1013. https://doi.org/10.1109/TVT.2018.2882500

    Article  Google Scholar 

  103. Khan, W. U., Jameel, F., Ristaniemi, T., Khan, S., Sidhu, G. A. S., & Liu, J. (2020). Joint spectral and energy efficiency optimization for downlink NOMA networks. IEEE Transactions on Cognitive Communications and Networking, 6(2), 645–656. https://doi.org/10.1109/TCCN.2019.2945802

    Article  Google Scholar 

  104. Glei, N., & Belgacem Chibani, R. (2019). “Power allocation for energy-efficient downlink NOMA systems,” In 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 611–613, Doi: https://doi.org/10.1109/STA.2019.8717240.

  105. Huang, Y., Wang, J., & Zhu, J. (2019). Optimal power allocation for downlink NOMA Systems. In M. Vaezi, H. Zhiguo Ding, & V. Poor (Eds.), Multiple Access Techniques for 5G Wireless Networks and Beyond (pp. 195–227). Springer. https://doi.org/10.1007/978-3-319-92090-0_6

    Chapter  Google Scholar 

  106. Fang, F., Ding, Z., Liang, W., & Zhang, H. (2019). Optimal energy efficient power allocation with user fairness for uplink MC-NOMA systems. IEEE Wireless Communications Letters, 8(4), 1133–1136. https://doi.org/10.1109/LWC.2019.2908912

    Article  Google Scholar 

  107. Sindhu, P., Deepak, K. S., & Abdul Hameed, K. M. (2019). Weighted sum energy efficiency maximization of device-to-device groups underlaying NOMA cellular network. Physical Communication. https://doi.org/10.1016/j.phycom.2019.100806

    Article  Google Scholar 

  108. Zamani, M. R., Eslami, M., Khorramizadeh, M., Zamani, H., & Ding, Z. (2020). optimizing weighted-sum energy efficiency in downlink and uplink NOMA systems. IEEE Transactions on Vehicular Technology, 69(10), 11112–11127. https://doi.org/10.1109/TVT.2020.3007716

    Article  Google Scholar 

  109. Abd-Elnaby, M., Sedhom, G. G., El-Rabaie, E.-S.M., & Elwekeil, M. (2022). An optimum weighted energy efficiency approach for low complexity power allocation in downlink NOMA. IEEE Access, 10, 80667–80679. https://doi.org/10.1109/ACCESS.2022.3194539

    Article  Google Scholar 

  110. Liu, F., Mähönen, P., & Petrova, M. (2015). “Proportional fairness-based user pairing and power allocation for non-orthogonal multiple access.” In 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1127–1131, Doi: https://doi.org/10.1109/PIMRC.2015.7343467.

  111. Guo, J., Wang, X., Yang, J., Zheng, J., & Zhao, B. (2016). “User pairing and power allocation for downlink non-orthogonal multiple access.” In 2016 IEEE Globecom Workshops (GC Wkshps), pp. 1–6, Doi: https://doi.org/10.1109/GLOCOMW.2016.7849074.

  112. Datta, S. N., & Kalyanasundaram, S. (2016). “Optimal power allocation and user selection in non-orthogonal multiple access systems” In 2016 IEEE Wireless Communications and Networking Conference, pp. 1–6, Doi: https://doi.org/10.1109/WCNC.2016.7565149.

  113. Mei, J., Yao, L., Long, H., & Zheng, K. (2016). “Joint user pairing and power allocation for downlink non-orthogonal multiple access systems.” In 2016 IEEE International Conference on Communications (ICC), pp. 1–6, Doi: https://doi.org/10.1109/ICC.2016.7510914.

  114. Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2016). Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation. IEEE Transactions on Wireless Communications, 15(12), 8580–8594. https://doi.org/10.1109/TWC.2016.2616310

    Article  Google Scholar 

  115. Liu, F., & Petrova, M. (2017). “Proportional Fair scheduling for downlink single-carrier NOMA systems.” In GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pp. 1–7, Doi: https://doi.org/10.1109/GLOCOM.2017.8254921.

  116. Wei, Z., Ng, D. W. K., Yuan, J., & Wang, H. (2017). Optimal resource allocation for power-efficient MC-NOMA with imperfect channel state information. IEEE Transactions on Communications, 65(9), 3944–3961. https://doi.org/10.1109/TCOMM.2017.2709301

    Article  Google Scholar 

  117. Fu, Y., Salaün, L., Sung, C. W., & Chen, C. S. (2018). Subcarrier and power allocation for the downlink of multicarrier NOMA systems. IEEE Transactions on Wireless Communications, 67(12), 11833–11847. https://doi.org/10.1109/TVT.2018.2875601

    Article  Google Scholar 

  118. Zuo, Y., Zhu, X., Jiang, Y., Wei, Z., Zeng, H., & Wang, T. (2018). “Energy efficiency and spectral efficiency tradeoff for multicarrier NOMA systems with user fairness.” In 2018 IEEE/CIC International Conference on Communications in China (ICCC), pp. 666–670, Doi: https://doi.org/10.1109/ICCChina.2018.8641176.

  119. Ali, Z. J., Noordin, N. K., Sali, A., Hashim, F., & Balfaqih, M. (2019). “An efficient method for resource allocation and user pairing in downlink non-orthogonal multiple access system.” In 2019 IEEE 14th Malaysia International Conference on Communication (MICC), pp. 124–129, Doi: https://doi.org/10.1109/MICC48337.2019.9037507.

  120. Ali, Z. J., Noordin, N. K., Sali, A., Hashim, F., & Balfaqih, M. (2020). Novel resource allocation techniques for downlink non-orthogonal multiple access systems. Applied Sciences. https://doi.org/10.3390/app10175892

    Article  Google Scholar 

  121. Wang, K., Liu, Y., Ding, Z., Nallanathan, A., & Peng, M. (2019). User association and power allocation for multi-cell non-orthogonal multiple access networks. IEEE Transactions on Wireless Communications, 18(11), 5284–5298. https://doi.org/10.1109/TWC.2019.2935433

    Article  Google Scholar 

  122. Salaün, L., Coupechoux, M., & Chen, C. S. (2019). “Weighted sum-rate maximization in multi-carrier noma with cellular power constraint.” In IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France, pp. 451–459, Doi: https://doi.org/10.1109/INFOCOM.2019.8737495.

  123. Salaün, L., Coupechoux, M., & Chen, C. S. (2020). Joint subcarrier and power allocation in NOMA: Optimal and approximate algorithms. IEEE Transactions on Signal Processing, 68, 2215–2230. https://doi.org/10.1109/TSP.2020.2982786

    Article  MathSciNet  MATH  Google Scholar 

  124. Azam, I., Shahab, M. B., & Shin, S. Y. (2019) “User pairing and power allocation for capacity maximization in uplink NOMA.” In 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), pp. 690–694, Doi: https://doi.org/10.1109/TSP.2019.8768824.

  125. Chen, L., Ma, L., & Xu, Y. (2019). Proportional fairness-based user pairing and power allocation algorithm for non-orthogonal multiple access system. IEEE Access, 7, 19602–19615. https://doi.org/10.1109/ACCESS.2019.2896181

    Article  Google Scholar 

  126. Wang, C. -L., & Hung, C. -W. (2020). “Proportional-fairness resource allocation for a downlink multicarrier NOMA system.” In 2020 14th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–6, Doi: https://doi.org/10.1109/ICSPCS50536.2020.9310054.

  127. Mounchili, S., & Hamouda, S. (2020). Pairing distance resolution and power control for massive connectivity improvement in NOMA systems. IEEE Transactions on Vehicular Technology, 69(4), 4093–4103. https://doi.org/10.1109/TVT.2020.2975539

    Article  Google Scholar 

  128. Abuajwa, O., Roslee, M. B., & Yusoff, Z. B. (2021). Simulated annealing for resource allocation in downlink NOMA systems in 5G networks. Applied Sciences. https://doi.org/10.3390/app11104592

    Article  Google Scholar 

  129. Fang, F., Zhang, H., Cheng, J., & Leung, V. C. M. (2017). “Energy-efficient resource scheduling for NOMA systems with imperfect channel state information,” in 2017 IEEE International Conference on Communications (ICC), pp. 1–5, Doi: https://doi.org/10.1109/ICC.2017.7996360.

  130. Fang, F., Zhang, H., Cheng, J., Roy, S., & Leung, V. C. M. (2017). Joint user scheduling and power allocation optimization for energy-efficient NOMA systems with imperfect CSI. IEEE Journal on Selected Areas in Communications, 35(12), 2874–2885. https://doi.org/10.1109/JSAC.2017.2777672

    Article  Google Scholar 

  131. Zhang, H., Zhang, J., Long, K., Nallanathan, A., & Leung, V. C. M. (2020). “Resource allocation for energy efficient NOMA UAV network under imperfect CSI.” In ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1–6, Doi: https://doi.org/10.1109/ICC40277.2020.9148694.

  132. Fang, F., Wang, K., Ding, Z., & Leung, V. C. M. (2021). Energy-efficient resource allocation for NOMA-MEC networks with imperfect CSI. IEEE Transactions on Communications, 69(5), 3436–3449. https://doi.org/10.1109/TCOMM.2021.3058964

    Article  Google Scholar 

  133. Manglayev, T., Kizilirmak, R. C., Kho, Y. H., Bazhayev, N., & Lebedev, I. (2017). “NOMA with imperfect SIC implementation.” In IEEE EUROCON 2017 -17th International Conference on Smart Technologies, pp. 22–25, Doi: https://doi.org/10.1109/EUROCON.2017.8011071.

  134. Liu, M., Song, T., & Gui, G. (2019). Deep cognitive perspective: resource allocation for NOMA-based heterogeneous IoT with imperfect SIC. IEEE Internet of Things Journal, 6(2), 2885–2894. https://doi.org/10.1109/JIOT.2018.2876152

    Article  Google Scholar 

  135. Liu, M., Song, T., Zhang, L., & Gui, G., (2018). “Resource allocation for NOMA based heterogeneous IoT with imperfect SIC: A deep learning method.” In 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1440–1446, Doi: https://doi.org/10.1109/PIMRC.2018.8581013.

  136. Nguyen, T., Phan, V., & Truong, P. Q., (2019). “Energy efficient performance analysis of NOMA for wireless down-link in heterogeneous networks under imperfect SIC.” In 2019 International Conference on System Science and Engineering (ICSSE), pp. 255–260, Doi: https://doi.org/10.1109/ICSSE.2019.8823337.

  137. Do, D., Le Anh, T., Nguyen, T. N., Li, X., & Rabie, K. M. (2020). Joint impacts of imperfect CSI and imperfect SIC in cognitive radio-assisted NOMA-V2X communications. IEEE Access, 8, 128629–128645. https://doi.org/10.1109/ACCESS.2020.3008788

    Article  Google Scholar 

  138. Do, D., Le, A., & Lee, B. M. (2020). NOMA in cooperative underlay cognitive radio networks under imperfect SIC. IEEE Access, 8, 86180–86195. https://doi.org/10.1109/ACCESS.2020.2992660

    Article  Google Scholar 

  139. Fang, F., Cheng, J., & Ding, Z. (2019). Joint Energy efficient subchannel and power optimization for a downlink NOMA heterogeneous network. IEEE Transactions on Vehicular Technology, 68(2), 1351–1364. https://doi.org/10.1109/TVT.2018.2881314

    Article  Google Scholar 

  140. Zhou, F., Wu, Y., Hu, R. Q., Wang, Y., & Wong, K. K. (2018). Energy-efficient NOMA enabled heterogeneous cloud radio access networks. IEEE Network, 32(2), 152–160. https://doi.org/10.1109/MNET.2017.1700208

    Article  Google Scholar 

  141. Long, K., Li, W., Jiang, M., & Lu, J. (2020). Non-cooperative game-based power allocation for energy-efficient NOMA heterogeneous network. IEEE Access, 8, 49596–49609. https://doi.org/10.1109/ACCESS.2020.2980191

    Article  Google Scholar 

  142. Elhattab, M., Arfaoui, M.-A., & Assi, C. (2020). CoMP transmission in downlink NOMA-based heterogeneous cloud radio access networks. IEEE Transactions on Communications, 68(12), 7779–7794. https://doi.org/10.1109/TCOMM.2020.3021145

    Article  Google Scholar 

  143. Moltafet, M., Azmi, P., Javan, M. R., Mokari, N., & Mokdad, A. (2019). Optimal radio resource allocation to achieve a low BER in PD-NOMA–based heterogeneous cellular networks. Transactions on Emerging Telecommunications Technologies. https://doi.org/10.1002/ett.3572

    Article  Google Scholar 

  144. Niasar, F. A., Momen, A. R., & Hosseini, S. A. (2022). A novel approach to fairness-aware energy efficiency in green heterogeneous cellular networks. Wireless Networks, 28(6), 2651–2667. https://doi.org/10.1007/s11276-022-02987-x

    Article  Google Scholar 

  145. Nikjoo, F., Mirzaei, A., & Mohajer, A. (2018). A novel approach to efficient resource allocation in NOMA heterogeneous networks: Multi-criteria green resource management. Applied Artificial Intelligence, 32(11), 583–612. https://doi.org/10.1080/08839514.2018.1486132

    Article  Google Scholar 

  146. Mohajer, A., Sorouri, F., Mirzaei, A., Ziaeddini, A., Rad, K. J., & Bavaghar, M. (2022). Energy-aware hierarchical resource management and backhaul traffic optimization in heterogeneous cellular networks. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2022.3154162

    Article  Google Scholar 

  147. Fletscher, L. A., Suárez, L. A., Grace, D., Peroni, C. V., & Maestre, J. M. (2019). Energy-aware resource management in heterogeneous cellular networks with hybrid energy sources. IEEE Transactions on Network and Service Management, 16(1), 279–293. https://doi.org/10.1109/TNSM.2018.2866533

    Article  Google Scholar 

  148. Liu, L., Zhang, Z., Chen, G., & Zhang, H. (2021). Resource management of heterogeneous cellular networks with hybrid energy supplies: A multi-objective optimization approach. IEEE Transactions on Wireless Communications, 20(7), 4392–4405. https://doi.org/10.1109/TWC.2021.3058519

    Article  Google Scholar 

  149. Khan, H. Z., Ali, M., Naeem, M., Rashid, I., Mumtaz, S., Khan, A. A., & Akhtar, A. N. (2022). “Secure resource management in beyond 5G heterogeneous networks with decoupled access. Ad Hoc Networks. https://doi.org/10.1016/j.adhoc.2021.102737

    Article  Google Scholar 

  150. Chandra, K., Marcano, A. S., Mumtaz, S., Prasad, R. V., & Christiansen, H. L. (2018). Unveiling capacity gains in ultra dense networks: Using mm-wave NOMA. IEEE Vehicular Technology Magazine, 13(2), 75–83. https://doi.org/10.1109/MVT.2018.2814822

    Article  Google Scholar 

  151. Xiao, Z., Zhu, L., Gao, Z., Wu, D. O., & Xia, X. (2019). User fairness non-orthogonal multiple access (NOMA) for millimeter-wave communications with analog beamforming. IEEE Transactions on Wireless Communications, 18(7), 3411–3423. https://doi.org/10.1109/TWC.2019.2913844

    Article  Google Scholar 

  152. Wang, K., Cui, J., Ding, Z., & Fan, P. (2019). Stackelberg game for user clustering and power allocation in millimeter wave-NOMA systems. IEEE Transactions on Wireless Communications, 18(5), 2842–2857. https://doi.org/10.1109/TWC.2019.2908642

    Article  Google Scholar 

  153. Khaled, I., Langlais, C., El Falou, A., Jezequel, M., & ElHasssan, B., (2020) “Joint SDMA and power-domain NOMA system for multi-user mm-wave communications.” In 2020 International Wireless Communications and Mobile Computing (IWCMC), pp. 1112–1117, Doi: https://doi.org/10.1109/IWCMC48107.2020.9148204.

  154. Attaoui, W., Elbiaze, H., & Sabir, E. (2021). Joint beam alignment and power allocation for multi-user NOMA-mmwave systems. 2021 IEEE 4th World Forum (5GWF). https://doi.org/10.1109/5GWF52925.2021.00028

    Article  Google Scholar 

  155. Chen, C., Zhong, W., Yang, H., & Du, P. (2018). On the performance of MIMO-NOMA-based visible light communication systems. IEEE Photonics Technology Letters, 30(4), 307–310. https://doi.org/10.1109/LPT.2017.2785964

    Article  Google Scholar 

  156. Liu, X., Chen, Z., Wang, Y., Zhou, F., Luo, Y., & Hu, R. Q. (2019). BER analysis of NOMA-enabled visible light communication systems with different modulations. IEEE Transactions on Vehicular Technology, 68(11), 10807–10821. https://doi.org/10.1109/TVT.2019.2938909

    Article  Google Scholar 

  157. Tahira, Z., Asif, H. M., Khan, A. A., Baig, S., Mumtaz, S., & Al-Rubaye, S. (2019). Optimization of non-orthogonal multiple access based visible light communication systems. IEEE Communications Letters, 23(8), 1365–1368. https://doi.org/10.1109/LCOMM.2018.2889986

    Article  Google Scholar 

  158. Jha, M. K., Kumar, N., & Lakshmi, Y. V. S., (2020). “Performance of zero-biased NOMA VLC system.” In 2020 IEEE 3rd 5G World Forum (5GWF), pp. 519–523, 2020, Doi: https://doi.org/10.1109/5GWF49715.2020.9221432.

  159. Chen, D., Wang, Y., Jin, J., Lu, H., & Wang, J. (2020). An experimental study of NOMA in underwater visible light communication system. Optics Communications. https://doi.org/10.11016/j.optcom.2020.126199

    Article  Google Scholar 

  160. Kiani, A., & Ansari, N. (2018). Edge computing aware NOMA for 5G networks. IEEE Internet of Things Journal, 5(2), 1299–1306. https://doi.org/10.1109/JIOT.2018.2796542

    Article  Google Scholar 

  161. Pan, Y., Chen, M., Yang, Z., Huang, N., & Shikh-Bahaei, M. (2019). Energy-efficient noma-based mobile edge computing offloading. IEEE Communications Letters, 23(2), 310–313. https://doi.org/10.1109/LCOMM.2018.2882846

    Article  Google Scholar 

  162. Cao, X., Liu, C., & Peng, M., (2020). “Energy-efficient mobile edge computing in noma-based wireless networks: a game theory approach.” In ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pp. 1–6, 2020, Doi: https://doi.org/10.1109/ICC40277.2020.9149056.

  163. Dong, X., Li, X., Yue, X., & Xiang, W. (2020). Performance Analysis of cooperative NOMA based intelligent mobile edge computing system. China Communications, 17(8), 45–57. https://doi.org/10.23919/JCC.2020.08.004

    Article  Google Scholar 

  164. Xu, C., Zheng, G., & Tang, L. (2020). Energy-aware user association for NOMA-based mobile edge computing using matching-coalition game. IEEE Access, 8, 61943–61955. https://doi.org/10.1109/ACCESS.2020.2984798

    Article  Google Scholar 

  165. Du, J., et al. (2021). When mobile-edge computing (MEC) meets nonorthogonal multiple access (NOMA) for the internet of things (IoT): system design and optimization. IEEE Internet of Things Journal, 8(10), 7849–7862. https://doi.org/10.1109/JIOT.2020.3041598

    Article  Google Scholar 

  166. Mohajer, A., Daliri, M. S., Mirzaei, A., Ziaeddini, A., Nabipour, M., & Bavaghar, M. (2022). Heterogeneous computational resource allocation for NOMA: Toward green mobile edge-computing systems. IEEE Transactions on Services Computing. https://doi.org/10.1109/TSC.2022.3186099

    Article  Google Scholar 

  167. Meng, A., Wei, G., Zhao, Y., & Yang, Z. (2022). Green resource allocation for mobile edge computing. Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2022.03.001

    Article  Google Scholar 

  168. Liu, X., & Liu, J. (2021). “Energy-efficient allocation for multiple tasks in mobile edge computing.” Journal of Cloud Computing Advances Systems and Applications. https://doi.org/10.21203/rs.3.rs-1070429/v1

    Article  Google Scholar 

  169. Yang, L., Xu, G., Ge, J., Liu, P., & Fu, X. (2020). Energy-efficient resource allocation for application including dependent tasks in mobile edge computing. KSII Transactions on Internet and Information Systems, 14(6), 2422–2443. https://doi.org/10.3837/tiis.2020.06.006

    Article  Google Scholar 

  170. Wang, K., Liang, W., Yuan, Y., Liu, Y., Ma, Z., & Ding, Z. (2019). User clustering and power allocation for hybrid non-orthogonal multiple access systems. IEEE Transactions on Vehicular Technology, 68(12), 12052–12065. https://doi.org/10.1109/TVT.2019.2948105

    Article  Google Scholar 

  171. Suganuma, H., Suenaga, H., & Maehara, F. (2019). “Hybrid multiple access using simultaneously NOMA and OMA.” In 2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 1–2, Doi: https://doi.org/10.1109/ISPACS48206.2019.8986345.

  172. Giang, H. T. H., Hoan, T. N. K., Thanh, P. D., & Koo, I. (2020). Hybrid NOMA/OMA-based dynamic power allocation scheme using deep reinforcement learning in 5G networks. Applied Sciences. https://doi.org/10.3390/app10124236

    Article  Google Scholar 

  173. Lamba, A. K., Kumar, R., & Sharma, S. (2020). Power allocation for downlink multiuser hybrid noma-oma systems: An auction game approach. International Journal of Communication Systems. https://doi.org/10.1002/dac.4306

    Article  Google Scholar 

  174. You, H., Pan, Z., Liu, N., & You, X. (2020). User clustering scheme for downlink hybrid NOMA systems based on genetic algorithm. IEEE Access, 8, 129461–129468. https://doi.org/10.1109/ACCESS.2020.3009018

    Article  Google Scholar 

  175. Deka, K., & Sharma, S. (2021). Hybrid NOMA for future radio access: Design, potentials and limitations. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-09312-3

    Article  Google Scholar 

  176. Rahman, T., Khan, F., Khan, I., Ullah, N., Althobaiti, M. M., & Alassery, F. (2021). NOMA and OMA-based massive MIMO and clustering algorithms for beyond 5G IoT networks. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2021/6522089

    Article  Google Scholar 

  177. Zhang, J., Fan, J., Zhang, J., Ng, D. W. K., Sun, Q., & Ai, B. (2022). “Performance analysis and optimization of NOMA-based cell-free massive MIMO for IoT. IEEE Internet of Things Journal, 9(12), 9625–9639. https://doi.org/10.1109/JIOT.2021.3130026

    Article  Google Scholar 

  178. Gao, J., Wang, X., Shen, R., & Xu, Y. (2021). “User clustering and power allocation for mmwave MIMO-NOMA with IoT devices.” In 2021 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, Doi: https://doi.org/10.1109/WCNC49053.2021.9417541.

  179. Deng, Y., Li, Q., Zhang, Q., Yang, L., & Qin, J. (2021). Secure beamforming design in MIMO NOMA networks for internet of things with perfect and imperfect CSI. Computer Networks. https://doi.org/10.1016/j.comnet.2021.107839

    Article  Google Scholar 

  180. Rajak, S., Selvaprabhu, P., Chinnadurai, S., Hosen, A. S., Saad, A., & Tolba, A. (2022). Energy efficient MIMO-NOMA aided IoT network in B5G communications. Computer Networks. https://doi.org/10.1016/j.comnet.2022.109250

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support received from Taif University Researchers Supporting Project Number (TURSP-2020/147), Taif university, Taif, Saudi Arabia.

Funding

This research was supported by Taif University Researchers Supporting Project Number (TURSP-2020/147), Taif university, Taif, Saudi Arabia. Furthermore, this research was supported by the H2020 Marie Skłodowska-Curie Actions (MSCA) Individual Fellowships (IF) IUCCF grant 844253.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Elwekeil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to a missing affiliation of the corresponding author Dr. Mohamed Elwekeil.

Mohamed Elwekeil: On Leave from the Department of Electronics and Electrical Communication, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elnaby, M., Sedhom, G.G., El-Rabaie, ES.M. et al. NOMA for 5G and beyond: literature review and novel trends. Wireless Netw 29, 1629–1653 (2023). https://doi.org/10.1007/s11276-022-03175-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03175-7

Keywords

Navigation