Skip to main content
Log in

Optimizing computation offloading under heterogeneous delay requirements for wireless powered mobile edge computing

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

A Correction to this article was published on 14 December 2022

This article has been updated

Abstract

This paper studies the optimization design of a wireless powered mobile edge computing (WP-MEC) system with multiple edge servers, in which the heterogeneous delay requirements for tasks are considered. To achieve optimal computing performance of the WP-MEC, a computation rate maximization problem is formulated by jointly optimizing wireless power transmission time, offloading decision and resources allocation. It is a mixed-integer nonlinear programming problem that is NP-hard. In order to solve the problem, we decompose it into two sub-problems, a multiple knapsack sub-problem of user tasks offloading and a one-dimensional optimization sub-problem of wireless power transmission time. The multiple knapsack sub-problem is then solved using an integer encoding differential evolution algorithm. The algorithm can adequately consider various combinations of items among multiple feasible knapsacks, thus making it easier to find the solution with largest overall profit. Moreover, a multiple intervals golden-section search algorithm is designed for the one-dimensional optimization sub-problem of wireless power transmission time. The algorithm evaluates the given wireless power transmission time using the optimal solution to the corresponding multiple knapsacks problem, and can find the optimal wireless power transmission time by jointly optimizing multiple intervals. Next, a new computation offloading scheme, MKCTO, is proposed by integrating the two algorithms. Finally, the performance of MKCTO is verified by extensive numerical experiments and compared with other four benchmark schemes. The results show that MKCTO can achieve satisfactory performance of computation offloading, and outperform the other four schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. Malik, A. A., Masood, T., & Bilberg, A. (2020). Virtual reality in manufacturing: immersive and collaborative artificial-reality in design of human-robot workspace. International Journal of Computer Integrated Manufacturing, 33(1), 22–37. https://doi.org/10.1080/0951192X.2019.1690685

    Article  Google Scholar 

  2. Dalim, C. S. C., Sunar, M. S., Dey, A., et al. (2020). Using augmented reality with speech input for non-native children’s language learning. International Journal of Human-Computer Studies, 134, 44–64. https://doi.org/10.1016/j.ijhcs.2019.10.002

    Article  Google Scholar 

  3. Reipschläger, P., Flemisch, T., & Dachselt, R. (2021). Personal augmented reality for information visualization on large interactive displays. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1182–1192. https://doi.org/10.1109/TVCG.2020.3030460

    Article  Google Scholar 

  4. Zhang, X., Gao, H., Guo, M., et al. (2016). A study on key technologies of unmanned driving. CAAI Transactions on Intelligence Technology, 1(1), 4–13. https://doi.org/10.1016/j.trit.2016.03.003

    Article  Google Scholar 

  5. Ruotsalainen, L., Renaudin, V., Pei, L., et al. (2020). Toward autonomous driving in arctic areas. IEEE Intelligent Transportation Systems Magazine, 12(3), 10–24. https://doi.org/10.1109/MITS.2020.2994014

    Article  Google Scholar 

  6. Liu, H., Chen, S., & Kubota, N. (2013). Intelligent video systems and analytics: A survey. IEEE Transactions on Industrial Informatics, 9(3), 1222–1233. https://doi.org/10.1109/TII.2013.2255616

    Article  Google Scholar 

  7. Wan, S., Xu, X., Wang, T., et al. (2021). An intelligent video analysis method for abnormal event detection in intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4487–4495. https://doi.org/10.1109/TITS.2020.3017505

    Article  Google Scholar 

  8. Goudarzi, S., Anisi, M. H., Abdullah, A. H., et al. (2019). A hybrid intelligent model for network selection in the industrial internet of things. Applied Soft Computing, 74, 529–546. https://doi.org/10.1016/j.asoc.2018.10.030

    Article  Google Scholar 

  9. Chen, W. (2020). Intelligent manufacturing production line data monitoring system for industrial internet of things. Computer Communications, 151, 31–41. https://doi.org/10.1016/j.comcom.2019.12.035

    Article  Google Scholar 

  10. Bi, S., & Zhang, Y. J. (2018). Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading. IEEE Transactions on Wireless Communications, 17(6), 4177–4190. https://doi.org/10.1109/TWC.2018.2821664

    Article  Google Scholar 

  11. Patel, M., Naughton, B., & Chan, C. (2014). Mobile-edge computing introductory technical white paper. White Pap Mob Edge Comput Ind Initiat, 29, 854–864.

    Google Scholar 

  12. Sabella, D. (2021). Multi-access edge computing: Software development at the network edge. Springer. https://doi.org/10.1007/978-3-030-79618-1

  13. You, C., Huang, K., & Chae, H. (2016). Energy efficient mobile cloud computing powered by wireless energy transfer. IEEE Journal on Selected Areas in Communications, 34(5), 1757–1771. https://doi.org/10.1109/JSAC.2016.2545382

    Article  Google Scholar 

  14. Bi, S., Ho, C. K., & Zhang, R. (2015). Wireless powered communication: Opportunities and challenges. IEEE Communications Magazine, 53(4), 117–125. https://doi.org/10.1109/MCOM.2015.7081084

    Article  Google Scholar 

  15. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767. https://doi.org/10.1109/TCOMM.2013.13.120855

    Article  Google Scholar 

  16. Huang, L., Bi, S., & Zhang, Y. J. A. (2019). Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks. IEEE Transactions on Mobile Computing, 19(11), 2581–2593. https://doi.org/10.1109/TMC.2019.2928811

    Article  Google Scholar 

  17. Zhou, F., Wu, Y., Hu, R. Q., et al. (2018). Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE Journal on Selected Areas in Communications, 36(9), 1927–1941. https://doi.org/10.1109/JSAC.2018.2864426

    Article  Google Scholar 

  18. Wang F. (2017). Computation rate maximization for wireless powered mobile edge computing. In 23rd Asia-Pacific conference on communications, APCC 2017 (pp. 1–6). IEEE. https://doi.org/10.23919/APCC.2017.8304010

  19. Wu, D., Wang, F., Cao, X., et al. (2019). Joint communication and computation optimization for wireless powered mobile edge computing with D2D offloading. Journal Communications and Information Networks, 4(4), 72–86. https://doi.org/10.23919/JCIN.2019.9005435

    Article  Google Scholar 

  20. Zhou, F., & Hu, R. Q. (2020). Computation efficiency maximization in wireless-powered mobile edge computing networks. IEEE Transactions on Wireless Communications, 19(5), 3170–3184. https://doi.org/10.1109/TWC.2020.2970920

    Article  Google Scholar 

  21. Ji, L., & Guo, S. (2019). Energy-efficient cooperative resource allocation in wireless powered mobile edge computing. IEEE Internet of Things Journal, 6(3), 4744–4754. https://doi.org/10.1109/JIOT.2018.2880812

    Article  MathSciNet  Google Scholar 

  22. Mao S., Leng S., & Yang K., et al. (2017). Fair energy-efficient scheduling in wireless powered full-duplex mobile-edge computing systems. In 2017 IEEE global communications conference, GLOBECOM 2017 (pp. 1–6). IEEE. https://doi.org/10.1109/GLOCOM.2017.8254208

  23. Wang, F., Xu, J., Wang, X., et al. (2018). Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Transactions on Wireless Communications, 17(3), 1784–1797. https://doi.org/10.1109/TWC.2017.2785305

    Article  Google Scholar 

  24. Hu, X., Wong, K., & Yang, K. (2018). Wireless powered cooperation-assisted mobile edge computing. IEEE Transactions on Wireless Communications, 17(4), 2375–2388. https://doi.org/10.1109/TWC.2018.2794345

    Article  Google Scholar 

  25. Wang, F., Xing, H., & Xu, J. (2020). Real-time resource allocation for wireless powered multiuser mobile edge computing with energy and task causality. IEEE Transactions on Communications, 68(11), 7140–7155. https://doi.org/10.1109/TCOMM.2020.3011990

    Article  Google Scholar 

  26. Wang, F., Xu, J., & Cui, S. (2020). Optimal energy allocation and task offloading policy for wireless powered mobile edge computing systems. IEEE Transactions on Wireless Communications, 19(4), 2443–2459. https://doi.org/10.1109/TWC.2020.2964765

    Article  Google Scholar 

  27. Wang F., Xing H., & Xu J. (2019). Optimal resource allocation for wireless powered mobile edge computing with dynamic task arrivals. In 2019 IEEE international conference on communications, ICC 2019 (pp. 1–7). IEEE. https://doi.org/10.1109/ICC.2019.8761143

  28. Zhu T., Li J., & Cai Z., et al. (2020). Computation scheduling for wireless powered mobile edge computing networks. In 2020 39th IEEE conference on computer communications, INFOCOM 2020 (pp. 596–605). IEEE. https://doi.org/10.1109/INFOCOM41043.2020.9155418

  29. Wu, H., Lyu, X., & Tian, H. (2019). Online optimization of wireless powered mobile-edge computing for heterogeneous industrial internet of things. IEEE Internet of Things Journal, 6(6), 9880–9892. https://doi.org/10.1109/JIOT.2019.2932995

    Article  Google Scholar 

  30. Mao, S., Leng, S., Maharjan, S., et al. (2020). Energy efficiency and delay tradeoff for wireless powered mobile-edge computing systems with multi-access schemes. IEEE Transactions on Wireless Communications, 19(3), 1855–1867. https://doi.org/10.1109/TWC.2019.2959300

    Article  Google Scholar 

  31. Naderi, M. Y., Nintanavongsa, P., & Chowdhury, K. R. (2014). RF-MAC: A medium access control protocol for re-chargeable sensor networks powered by wireless energy harvesting. IEEE Transactions on Wireless Communications, 13(7), 3926–3937. https://doi.org/10.1109/TWC.2014.2315211

    Article  Google Scholar 

  32. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001. https://doi.org/10.1109/TWC.2013.031813.120224

    Article  Google Scholar 

  33. Wang, Y., Sheng, M., Wang, X., et al. (2016). Mobile-edge computing: Partial computation offloading using dynamic voltage scaling. IEEE Transactions on Communications, 64(10), 4268–4282. https://doi.org/10.1109/TCOMM.2016.2599530

    Article  Google Scholar 

  34. Barbarossa, S., Sardellitti, S., & Lorenzo, P. D. (2014). Communicating while computing: Distributed mobile cloud computing over 5g heterogeneous networks. IEEE Signal Processing Magazine, 31(6), 45–55. https://doi.org/10.1109/MSP.2014.2334709

    Article  Google Scholar 

  35. Zhang, W., Wen, Y., Guan, K., et al. (2013). Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Transactions on Wireless Communications, 12(9), 4569–4581. https://doi.org/10.1109/TWC.2013.072513.121842

    Article  Google Scholar 

  36. You, C., Huang, K., & Chae, H. (2016). Energy efficient mobile cloud computing powered by wireless energy transfer. IEEE Journal on Selected Areas in Communications, 34(5), 1757–1771. https://doi.org/10.1109/JSAC.2016.2545382

    Article  Google Scholar 

  37. Dell’Amico, M., Delorme, M., Iori, M., et al. (2019). Mathematical models and decomposition methods for the multiple knapsack problem. European Journal of Operational Research, 274(3), 886–899. https://doi.org/10.1016/j.ejor.2018.10.043

    Article  MathSciNet  MATH  Google Scholar 

  38. Pisinger, D. (1999). An exact algorithm for large multiple knapsack problems. European Journal of Operational Research, 114(3), 528–541. https://doi.org/10.1016/S0377-2217(98)00120-9

    Article  MathSciNet  MATH  Google Scholar 

  39. Chekuri, C., & Khanna, S. (2005). A polynomial time approximation scheme for the multiple knapsack problem. SIAM Journal on Computing, 35(3), 713–728. https://doi.org/10.1137/S0097539700382820

    Article  MathSciNet  MATH  Google Scholar 

  40. Kellerer H. (1999). A polynomial time approximation scheme for the multiple knapsack problem. In Randomization, approximation, and combinatorial algorithms and techniques, third international workshop on randomization and approximation techniques in computer science, and second international workshop on approximation algorithms for combinatorial optimization problems RANDOM-APPROX’99, proceedings, lecture notes in computer science (vol. 1671, pp. 51–62). Springer. https://doi.org/10.1007/978-3-540-48413-4_6

  41. Fukunaga A.S. (2008). A new grouping genetic algorithm for the multiple knapsack problem. In Proceedings of the IEEE congress on evolutionary computation, CEC 2008 (pp. 2225–2232). IEEE. https://doi.org/10.1109/CEC.2008.4631094

  42. Fukunaga, A. S. (2011). A branch-and-bound algorithm for hard multiple knapsack problems. Annals of Operations Research, 184(1), 97–119. https://doi.org/10.1007/s10479-009-0660-y

    Article  MathSciNet  MATH  Google Scholar 

  43. Storn, R., & Price, K. V. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  44. Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31. https://doi.org/10.1109/TEVC.2010.2059031

    Article  Google Scholar 

  45. Qin, A. K., Huang, V. L., & Suganthan, P. N. (2009). Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation, 13(2), 398–417. https://doi.org/10.1109/TEVC.2008.927706

    Article  Google Scholar 

  46. Alatas, B., Akin, E., & Karci, A. (2008). MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules. Applied Soft Computing, 8(1), 646–656. https://doi.org/10.1016/j.asoc.2007.05.003

    Article  Google Scholar 

  47. Zhang, J., & Sanderson, A. C. (2009). JADE: Adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation, 13(5), 945–958. https://doi.org/10.1109/TEVC.2009.2014613

    Article  Google Scholar 

  48. Peng, H., & Wu, Z. (2015). Heterozygous differential evolution with Taguchi local search. Soft Computing, 19(11), 3273–3291. https://doi.org/10.1007/s00500-014-1482-7

    Article  Google Scholar 

  49. Wang, Y., Cai, Z., & Zhang, Q. (2011). Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation, 15(1), 55–66. https://doi.org/10.1109/TEVC.2010.2087271

    Article  Google Scholar 

  50. Ali, I. M., Essam, D., & Kasmarik, K. (2021). Novel binary differential evolution algorithm for knapsack problems. Information Sciences, 542, 177–194. https://doi.org/10.1016/j.ins.2020.07.013

    Article  MathSciNet  MATH  Google Scholar 

  51. Ali I.M., Essam D., & Kasmarik K. (2018). An efficient differential evolution algorithm for solving 0–1 knapsack problems. In 2018 IEEE congress on evolutionary computation, CEC 2018 (pp. 1–8). IEEE. https://doi.org/10.1109/CEC.2018.8477916

  52. Ali, I. M., Essam, D., & Kasmarik, K. (2020). A novel design of differential evolution for solving discrete traveling salesman problems. Swarm and Evolutionary Computation. https://doi.org/10.1016/j.swevo.2019.100607

    Article  Google Scholar 

  53. Peng, H., Wu, Z., Shao, P., et al. (2016). Dichotomous binary differential evolution for knapsack problems. Mathematical Problems in Engineering, 2016, 1–13. https://doi.org/10.1155/2016/5732489

    Article  MathSciNet  MATH  Google Scholar 

  54. Chen, X., Mei, C., Xu, B., et al. (2018). Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization. Knowledge Based Systems, 145, 250–263. https://doi.org/10.1016/j.knosys.2018.01.021

    Article  Google Scholar 

  55. Demir, A., Ömür, N., & Ulutas, Y. T. (2008). Parametrized Fibonacci search method with k-Lucas numbers. Applied Mathematics and Computation, 198(1), 355–360. https://doi.org/10.1016/j.amc.2007.08.041

    Article  MathSciNet  MATH  Google Scholar 

  56. Cuevas, E., Enríquez, L., Zaldivar, D., et al. (2018). A selection method for evolutionary algorithms based on the golden section. Expert Systems With Applications, 106, 183–196. https://doi.org/10.1016/j.eswa.2018.03.064

    Article  Google Scholar 

  57. Chakraborty, S. K., & Panda, G. (2016). Golden section search over hyper-rectangle: A direct search method. International Journal of Mathematics in Operational Research, 8(3), 279–292. https://doi.org/10.1504/IJMOR.2016.075517

    Article  MathSciNet  MATH  Google Scholar 

  58. García, S., Molina, D., Lozano, M., et al. (2009). A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics, 15(6), 617–644. https://doi.org/10.1007/s10732-008-9080-4

    Article  MATH  Google Scholar 

  59. Alcalá-Fdez, J., Sánchez, L., García, S., et al. (2009). KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Computing, 13(3), 307–318. https://doi.org/10.1007/s00500-008-0323-y

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61961021), the Science and Technology Foundation of Jiangxi Province (No. 20202BABL202019 and No. 20202BABL202036), and the Science and Technology Project of Jiangxi Education Department (No. GJJ180251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Dong.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Z., Dong, X. & Deng, C. Optimizing computation offloading under heterogeneous delay requirements for wireless powered mobile edge computing. Wireless Netw 29, 1577–1607 (2023). https://doi.org/10.1007/s11276-022-03075-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-03075-w

Keywords

Navigation