Skip to main content

Memetic algorithm applied to topology control optimization of a wireless sensor network

Abstract

In most applications of wireless sensor networks the specification of the corresponding topology can be useful for the optimization of some important features, such as: node energy consumption, connectivity and coverage area. This is known as the Sensor Allocation Problem (SAP). Our work proposes an approach based on memetic algorithm concepts to find high-quality solutions. In our approach, each node can be associated with one of four operation modes (classified according to its maximum range). The algorithm optimizes the position of each node and produces solution clusters. In order to evaluate the efficiency of the method, we analyze case studies with different coverage areas that are then compared against results previously found in the literature. Our experiments show that in order to achieve a smaller energy consumption and an increase in network coverage area, one needs to operate with a sizeable number of sensors, but with few nodes operating in larger transmission power modes (which require an increased energy expenditure).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Notes

  1. In the literature, such techniques are also known as placement or coverage schemes [6].

  2. To obtain more specific information about the optimization parameters, please refer to [29].

References

  1. Kim, H., & Han, S. (2015). An efficient sensor deployment scheme for large-scale wireless sensor networks. IEEE Communications Letters, 19(1), 98–101.

    Article  Google Scholar 

  2. Radhika, S., & Rangarajan, P. (2019). On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction. Applied Soft Computing, 83, 105610.

    Article  Google Scholar 

  3. Yan, Z., Mukherjee, A., Yang, L., Routray, S., & Palai, G. (2019). Energy-efficient node positioning in optical wireless sensor networks. Optik, 178, 461–466.

    Article  Google Scholar 

  4. Kumar, D. P., Amgoth, T., & Annavarapu, C. S. R. (2019). Machine learning algorithms for wireless sensor networks: A survey. Information Fusion, 49, 1–25.

    Article  Google Scholar 

  5. Stankovic, J. A. (2008). Wireless sensor networks. Computer, 41(10), 92–95.

    Article  Google Scholar 

  6. Abdollahzadeh, S., & Navimipour, N. J. (2016). Deployment strategies in the wireless sensor network: A comprehensive review. Computer Communications, 91–92, 1–16.

    Article  Google Scholar 

  7. Da Rocha Henriques, F., Lovisolo, L., & Barros da Silva, E. A. (2019). Rate-distortion performance and incremental transmission scheme of compressive sensed measurements in wireless sensor networks. Sensors. https://doi.org/10.3390/s19020266

    Article  Google Scholar 

  8. do Prado, R. A., Guedes, R. M., da R. Henriques, F., da Costa, F. M., Tarrataca, L. D. T. J., & Haddad, D. B. (2020). On the analysis of the incremental $$ \(\ell \) _0$$-LMS algorithm for distributed systems. Circuits Systems and Signal Processing, 40(2), 845–871. https://doi.org/10.1007/s00034-020-01500-z

    Article  MATH  Google Scholar 

  9. Carmo, R. M., Tarrataca, L., Colares, J., Henriques, F. R., Haddad, D. B., & Guedes, R. M. (2020). Distributed adaptive filtering on wireless sensor networks with shared medium competition. Learning and Nonlinear Models, 18(1), 15–34. https://doi.org/10.21528/lnlm-vol18-no1-art2

    Article  Google Scholar 

  10. d. Prado, R.A., d. R. Henriques, F., & Haddad, D.B. (2018) Sparsity-aware distributed adaptive filtering algorithms for nonlinear system identification. In: 2018 International joint conference on neural networks (IJCNN), pp. 1–8 . https://doi.org/10.1109/IJCNN.2018.8489173

  11. Boukerche, A., & Sun, P. (2018). Connectivity and coverage based protocols for wireless sensor networks. Ad Hoc Networks, 80, 54–69.

    Article  Google Scholar 

  12. Jiang, Ruixiang, & Chen, Biao. (2005). Fusion of censored decisions in wireless sensor networks. IEEE Transactions on Wireless Communications, 4(6), 2668–2673.

    Article  Google Scholar 

  13. Yang, L., Zhu, H., Wang, H., Kang, K., & Qian, H. (2019). Data censoring with network lifetime constraint in wireless sensor networks. Digital Signal Processing, 92, 73–81.

    Article  Google Scholar 

  14. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38, 393–422.

    Article  Google Scholar 

  15. Stankovic, J. A., Abdelzaher, T., Lu, C., Sha, L., & Hou, J. C. (2003). Real-time communication and coordination in embedded sensor networks. Proceedings of the IEEE, 91(7), 1002–1022.

    Article  Google Scholar 

  16. Hussain, S., & Islam, O. (2007) An energy efficient spanning tree based multi-hop routing in wireless sensor networks. In: Wireless communications and networking conference, 2007, WCNC 2007, IEEE, pp. 4383–4388.

  17. Henriques, F. R., Lovisolo, L., & Rubinstein, M. G. (2016). DECA: distributed energy conservation algorithm for process reconstruction with bounded relative error in wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2016(163), 1–18.

    Google Scholar 

  18. Chen, H., Li, X., & Zhao, F. (2016). A reinforcement learning-based sleep scheduling algorithm for desired area coverage in solar-powered wireless sensor networks. IEEE Sensors Journal, 16(8), 2763–2774.

    Article  Google Scholar 

  19. Yi, C. (2009). A unified analytic framework based on minimum scan statistics for wireless ad hoc and sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(9), 1233–1245.

    Article  Google Scholar 

  20. Singh, S. P., & Sharma, S. C. (2015). A survey on cluster based routing protocols in wireless sensor networks. Procedia Computer Science, 45, 687–695. https://doi.org/10.1016/j.procs.2015.03.133

    Article  Google Scholar 

  21. Üster, H., & Lin, H. (2011). Integrated topology control and routing in wireless sensor networks for prolonged network lifetime. Ad Hoc Networks, 9(5), 835–851. https://doi.org/10.1016/j.adhoc.2010.09.010

    Article  Google Scholar 

  22. Shutimarrungson, N., & Wuttidittachotti, P. (2019). Realistic propagation effects on wireless sensor networks for landslide management. EURASIP Journal on Wireless Communications and Networking, 2019(1), 1–14.

    Article  Google Scholar 

  23. Ali, N. S., Alkaream Alyasseri, Z. A., & Abdulmohson, A. (2018). Real-time heart pulse monitoring technique using wireless sensor network and mobile application. International Journal of Electrical Computer Engineering, 8(6), 2088–8708.

    Google Scholar 

  24. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., & Inman, D. J. (2018). Wireless and real-time structural damage detection: A novel decentralized method for wireless sensor networks. Journal of Sound and Vibration, 424, 158–172.

    Article  Google Scholar 

  25. Younus, M. U., Islam, Su., & Kim, S. W. (2019). Proposition and real-time implementation of an energy-aware routing protocol for a software defined wireless sensor network. Sensors, 19(12), 2739.

    Article  Google Scholar 

  26. Gendreau, M., & Potvin, J.-Y. (2010). Handbook of Metaheuristics (2nd ed.). New York: Springer.

    MATH  Book  Google Scholar 

  27. França, P. M., Mendes, A., & Moscato, P. (2001). A memetic algorithm for the total tardiness single machine scheduling problem. European Journal of Operational Research, 132, 224–242.

    MathSciNet  MATH  Article  Google Scholar 

  28. Corne, D., Dorigo, M., & Glover, F. (1999). New Ideas in Optimization. United Kingdom: McGraw-Hill.

    Google Scholar 

  29. Bhondekar, A. P., Vig, R., Singla, M. L., Ghanshyam, C., & Kapur, P. (2009). Genetic algorithm based node placement methodology for wireless sensor networks. Proceedings of the International Multiconference of Engineers and Computer Scientists, 1, 18–20.

    Google Scholar 

  30. Srivastava, J. R., & Sudarshan, T. S. B. (2015). Energy-efficient cache node placement using genetic algorithm in wireless sensor networks. Soft Computing, 19(11), 3145–3158. https://doi.org/10.1007/s00500-014-1473-8

    Article  Google Scholar 

  31. de Brito, J.A.G., de Junior, J.R., Henriques, F.d.R., & de Assis, L.S. (2019) Topology control optimization of wireless sensor networks for iot applications. In: Proceedings of the 25th brazillian symposium on multimedia and the web. WebMedia ’19, Association for Computing Machinery, New York, NY, USA pp. 477–480. https://doi.org/10.1145/3323503.3361718

  32. Sun, Z., Akyildiz, I. F., & Hancke, G. P. (2011). Dynamic connectivity in wireless underground sensor networks. IEEE Transactions on Wireless Communications, 10(12), 4334–4344.

    Article  Google Scholar 

  33. Nguyen, P. L., Hanh, N. T., Khuong, N. T., Binh, H. T. T., & Ji, Y. (2019). Node placement for connected target coverage in wireless sensor networks with dynamic sinks. Pervasive and Mobile Computing, 59, 101070.

    Article  Google Scholar 

  34. Ma, C., Liang, W., Zheng, M., & Sharif, H. (2016). A connectivity-aware approximation algorithm for relay node placement in wireless sensor networks. IEEE Sensors Journal, 16(2), 515–528.

    Article  Google Scholar 

  35. Fang, W., Song, X., Wu, X., Sun, J., & Hu, M. (2018). Novel efficient deployment schemes for sensor coverage in mobile wireless sensor networks. Information Fusion, 41, 25–36.

    Article  Google Scholar 

  36. Huang, G., Chen, D., & Liu, X. (2015). A node deployment strategy for blindness avoiding in wireless sensor networks. IEEE Communications Letters, 19(6), 1005–1008.

    Article  Google Scholar 

  37. Khalily-Dermany, M., Nadjafi-Arani, M. J., & Doostali, S. (2019). Combining topology control and network coding to optimize lifetime in wireless-sensor networks. Computer Networks, 162, 106859.

    Article  Google Scholar 

  38. Papadimitriou, C. H. (1981). On the complexity of integer programming. J. ACM, 28(4), 765–768. https://doi.org/10.1145/322276.322287

    MathSciNet  Article  MATH  Google Scholar 

  39. Senouci, M. R., & Lehtihet, H. E. (2018). Sampling-based selection-decimation deployment approach for large-scale wireless sensor networks. Ad Hoc Networks, 75–76, 135–146.

    Article  Google Scholar 

  40. Fu, X., Yao, H., & Yang, Y. (2019). Exploring the invulnerability of wireless sensor networks against cascading failures. Information Sciences, 491, 289–305.

    MathSciNet  MATH  Article  Google Scholar 

  41. Hasan, M. M., & Mouftah, H. T. (2017). Optimization of watchdog selection in wireless sensor networks. IEEE Wireless Communications Letters, 6(1), 94–97.

    Google Scholar 

  42. Seo, J. (2015). On minimizing energy consumption of duty-cycled wireless sensors. IEEE Communications Letters, 19(10), 1698–1701.

    Article  Google Scholar 

  43. Bahi, J., Elghazel, W., Guyeux, C., Hakem, M., Medjaher, K., & Zerhouni, N. (2019). Reliable diagnostics using wireless sensor networks. Computers in Industry, 104, 103–115.

    Article  Google Scholar 

  44. Li, F., Luo, J., Xin, S., & He, Y. (2016). Autonomous deployment of wireless sensor networks for optimal coverage with directional sensing model. Computer Networks, 108, 120–132.

    Article  Google Scholar 

  45. Yun, Y., Xia, Y., Behdani, B., & Smith, J. C. (2013). Distributed algorithm for lifetime maximization in a delay-tolerant wireless sensor network with a mobile sink. IEEE Transactions on Mobile Computing, 12(10), 1920–1930.

    Article  Google Scholar 

  46. Rakavi, A., Manikandan, M.S.K., & Hariharan, K. (2015) Grid based mobile sensor node deployment for improving area coverage in wireless sensor networks. In: 2015 3rd International conference on signal processing, communication and networking (ICSCN), pp. 1–5

  47. Chou, C. T., Ignjatovic, A., & Hu, W. (2013). Efficient computation of robust average of compressive sensing data in wireless sensor networks in the presence of sensor faults. IEEE Transactions on Parallel and Distributed Systems, 24(8), 1525–1534.

    Article  Google Scholar 

  48. Cheffena, M., & Mohamed, M. (2017). Empirical path loss models for wireless sensor network deployment in snowy environments. IEEE Antennas and Wireless Propagation Letters, 16, 2877–2880.

    Google Scholar 

  49. Tsiropoulou, E.E., Paruchuri, S.T., & Baras, J.S. (2017) Interest, energy and physical-aware coalition formation and resource allocation in smart iot applications. In: 2017 51st Annual conference on information sciences and systems (CISS), pp. 1–6 . https://doi.org/10.1109/CISS.2017.7926111

  50. Jiang, C., Chen, Y., Gao, Y., & Liu, K. J. R. (2013). Joint spectrum sensing and access evolutionary game in cognitive radio networks. IEEE Transactions on Wireless Communications, 12(5), 2470–2483. https://doi.org/10.1109/TWC.2013.031813.121135

    Article  Google Scholar 

  51. Primeau, N., Falcon, R., Abielmona, R., & Petriu, E. M. (2018). A review of computational intelligence techniques in wireless sensor and actuator networks. IEEE Communications Surveys Tutorials, 20(4), 2822–2854. https://doi.org/10.1109/COMST.2018.2850220

    Article  Google Scholar 

  52. Ma, L., Cheng, S., & Shi, Y. (2021). Enhancing learning efficiency of brain storm optimization via orthogonal learning design. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(11), 6723–6742. https://doi.org/10.1109/TSMC.2020.2963943

    Article  Google Scholar 

  53. Ma, L., Huang, M., Yang, S., Wang, R., & Wang, X. (2021). An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2020.3041212

    Article  Google Scholar 

  54. Ma, L., Wang, X., Wang, X., Wang, L., Shi, Y., & Huang, M. (2021). Tcda: Truthful combinatorial double auctions for mobile edge computing in industrial internet of things. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2021.3064314

    Article  Google Scholar 

  55. Ting, C.-K., & Liao, C.-C. (2010). A memetic algorithm for extending wireless sensor network lifetime. Information Sciences, 180(24), 4818–4833. https://doi.org/10.1016/j.ins.2010.08.021

    Article  Google Scholar 

  56. Fu, X., Pace, P., Aloi, G., Yang, L., & Fortino, G. (2020). Topology optimization against cascading failures on wireless sensor networks using a memetic algorithm. Computer Networks, 177, 107327. https://doi.org/10.1016/j.comnet.2020.107327

    Article  Google Scholar 

  57. Manap, S., Dimyati, K., Hindia, M. N., Abu Talip, M. S., & Tafazolli, R. (2020). Survey of radio resource management in 5g heterogeneous networks. IEEE Access, 8, 131202–131223. https://doi.org/10.1109/ACCESS.2020.3002252

    Article  Google Scholar 

  58. Bouchemal, N., Kallel, S., & Bouchemal, N. (2018) A survey: Wsn heterogeneous architecture platform for iot. In: International conference on machine learning for networking, Springer, pp. 321–332.

  59. Al-Turjman, F. M., Hassanein, H. S., & Ibnkahla, M. (2013). Quantifying connectivity in wireless sensor networks with grid-based deployments. Journal of Network and Computer Applications, 36(1), 368–377.

    Article  Google Scholar 

  60. Bondy, A., & Ramachandra, M. U. S. (2008). Graph theory. United Kingdom: Springer.

    Book  Google Scholar 

  61. Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2001). Introduction to algorithms (2nd ed.). Cambridge: MIT press.

    MATH  Google Scholar 

  62. Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16(1), 122–128. https://doi.org/10.1109/TSMC.1986.289288

    Article  Google Scholar 

  63. Bacao, F., Lobo, V., & Painho, M. (2005). Applying genetic algorithms to zone design. Soft Computing, 9, 28–35.

    Article  Google Scholar 

  64. de Assis, L. S., González, J. F. V., Usberti, F. L., Lyra, C., Cavellucci, C., & Zuben, F. J. V. (2015). Switch allocation problems in power distribution systems. IEEE Transactions on Power Systems, 30(1), 246–253. https://doi.org/10.1109/TPWRS.2014.2322811

    Article  Google Scholar 

  65. de Assis, L. S., de P. Junior, J. R., Tarrataca, L., & Haddad, D. B. (2019). Efficient volterra systems identification using hierarchical genetic algorithms. Applied Soft Computing, 85, 105745. https://doi.org/10.1016/j.asoc.2019.105745

    Article  Google Scholar 

  66. Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 65–85. https://doi.org/10.1007/BF00175354

    Article  Google Scholar 

  67. Gong, Y.-J., Chen, W.-N., Zhan, Z.-H., Zhang, J., Li, Y., Zhang, Q., & Li, J.-J. (2015). Distributed evolutionary algorithms and their models: A survey of the state-of-the-art. Applied Soft Computing, 34, 286–300. https://doi.org/10.1016/j.asoc.2015.04.061

    Article  Google Scholar 

  68. Moscato, P. , & Norman, M.G. (1992) A ”memetic” approach for the traveling salesman problem implementation of a computational ecology for combinatorial optimization on message-passing systems. In: In Proceedings of the international conference on parallel computing and transputer applications, pp. 177–186, IOS Press.

  69. Eiben, A., & Smith, J. (2015). Introduction to evolutionary computing (natural computing series) (p. 98). Germany: Springer.

    MATH  Book  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) Finance Code 001 and by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) - Reference: 210.286/2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge A. G. de Brito or Laura S. de Assis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Brito, J.A.G., Totte, D.R.M., Silva, F.O. et al. Memetic algorithm applied to topology control optimization of a wireless sensor network. Wireless Netw (2022). https://doi.org/10.1007/s11276-022-03068-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-022-03068-9

Keywords

  • Wireless Sensor Network
  • Combinatorial Optimization
  • Memetic Algorithms