Jiang, L., Shi, L., Liu, L., Yao, J., & Ali, M.E. (2019). User interest community detection on social media using collaborative filtering. Wireless networks, 1–7.
Feng, S., Shi, H., Huang, L., Shen, S., Yu, S., Peng, H., & Wu, C. (2021). Unknown hostile environment-oriented autonomous wsn deployment using a mobile robot. Journal of Network and Computer Applications, 182, 103053.
Article
Google Scholar
Yue, W., Zhao, S., & Zhu, Q. (2022). Mobility-aware caching in energy-harvesting-powered small-cell networks. Wireless Networks, 28(3), 1097–1111.
Article
Google Scholar
Feng, S., Wu, C., Zhang, Y., & Oliva, G. (2017). Wsn deployment and localization using a mobile agent. Wireless Personal Communications, 97(4), 4921–4931.
Article
Google Scholar
Qi, L., He, Q., Chen, F., Zhang, X., Dou, W., & Ni, Q. (2022). Data-driven web apis recommendation for building web applications. IEEE Transactions on Big Data, 8(3), 685–698.
Article
Google Scholar
Shen, S., Huang, L., Zhou, H., Yu, S., Fan, E., & Cao, Q. (2018). Multistage signaling game-based optimal detection strategies for suppressing malware diffusion in fog-cloud-based iot networks. IEEE Internet of Things Journal, 5(2), 1043–1054.
Article
Google Scholar
Zhang, Z., Cong, X., Feng, W., Zhang, H., Fu, G., & Chen, J. (2020). Waeas: An optimization scheme of eas scheduler for wearable applications. Tsinghua Science and Technology, 26(1), 72–84.
Article
Google Scholar
Qi, L., Song, H., Zhang, X., Srivastava, G., Xu, X., & Yu, S. (2021). Compatibility-aware web api recommendation for mashup creation via textual description mining. ACM Transactions on Multimidia Computing Communications and Applications, 17(1s), 1–19.
Article
Google Scholar
Zhang, S., Liu, H., He, J., Han, S., & Du, X. (2021). Deep sequential model for anchor recommendation on live streaming platforms. Big Data Mining and Analytics, 4(3), 173–182.
Article
Google Scholar
Song, Z., Cao, Z., Li, Z., Wang, J., & Liu, Y. (2021). Inertial motion tracking on mobile and wearable devices: Recent advancements and challenges. Tsinghua Science and Technology, 26(5), 692–705.
Article
Google Scholar
Liu, J., Wang, X., Shen, S., Yue, G., Yu, S., & Li, M. (2020). A bayesian q-learning game for dependable task offloading against ddos attacks in sensor edge cloud. IEEE Internet of Things Journal, 8(9), 7546–7561.
Article
Google Scholar
Sandhu, A. K. (2021). Big data with cloud computing: Discussions and challenges. Big Data Mining and Analytics, 5(1), 32–40.
Article
Google Scholar
Tan, X., Zhang, J., Zhang, Y., Qin, Z., Ding, Y., & Wang, X. (2020). A puf-based and cloud-assisted lightweight authentication for multi-hop body area network. Tsinghua Science and Technology, 26(1), 36–47.
Article
Google Scholar
Liu, J., Wang, X., Shen, S., Fang, Z., Yu, S., Yue, G., & Li, M. (2021). Intelligent jamming defense using dnn stackelberg game in sensor edge cloud. IEEE Internet of Things Journal.
Zhang, W., Chen, X., & Jiang, J. (2020). A multi-objective optimization method of initial virtual machine fault-tolerant placement for star topological data centers of cloud systems. Tsinghua Science and Technology, 26(1), 95–111.
Article
Google Scholar
Wang, F., Li, G., Wang, Y., Rafique, W., Khosravi, M. R., Liu, G., Liu, Y., & Qi, L. (2022). Privacy-aware traffic flow prediction based on multi-party sensor data with zero trust in smart city. ACM Transactions on Internet Technology. https://doi.org/10.1145/3511904
Article
Google Scholar
Qi, L., Hu, C., Zhang, X., Khosravi, M. R., Sharma, S., Pang, S., & Wang, T. (2021). Privacy-aware data fusion and prediction with spatial-temporal context for smart city industrial environment. IEEE Transactions on Industrial Informatics, 17(6), 4159–4167.
Article
Google Scholar
Li, F., Yu, X., Ge, R., Wang, Y., Cui, Y., & Zhou, H. (2021). Bcse: Blockchain-based trusted service evaluation model over big data. Big Data Mining and Analytics, 5(1), 1–14.
Article
Google Scholar
Kong, L., Wang, L., Gong, W., Yan, C., Duan, Y., & Qi, L. (2021). Lsh-aware multitype health data prediction with privacy preservation in edge environment. World Wide Web, 1–16 https://doi.org/10.1007/s11280-021-00941-z
Hou, C., Wu, J., Cao, B., & Fan, J. (2021). A deep-learning prediction model for imbalanced time series data forecasting. Big Data Mining and Analytics, 4(4), 266–278.
Article
Google Scholar
Martínez Cevallos, D., Alguacil, M., & Calabuig Moreno, F. (2020). Influence of brand image of a sports event on the recommendation of its participants. Sustainability, 12(12), 5040.
Article
Google Scholar
Dewi, R. K., Sari, Y. A., Widodo, A. W., Astungkoro, F. P., & Aziz, N. I. M. (2020). Testing for recommendation method in m-health sports venue recommendation system. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(6), 2143–2146.
Article
Google Scholar
Li, X., & Sun, F. (2021). Sports training recommendation method under the background of data analysis. In 2021 International Conference on High Performance Big Data and Intelligent Systems (HPBD &IS), pp. 12–16. IEEE.
Meng, X., Li, Z., Wang, S., Karambakhsh, A., Sheng, B., Yang, P., Li, P., & Mao, L. (2020). A video information driven football recommendation system. Computers & Electrical Engineering, 85, 106699.
Article
Google Scholar
Jayanth, S. B., Anthony, A., Abhilasha, G., Shaik, N., & Srinivasa, G. (2018). A team recommendation system and outcome prediction for the game of cricket. Journal of Sports Analytics, 4(4), 263–273.
Article
Google Scholar
Matos, P., Rocha, J., Gonçalves, R., Almeida, A., Santos, F., Abreu, D., & Martins, C. (2019). Smart coach-a recommendation system for young football athletes. In International Symposium on Ambient Intelligence, pp. 171–178 . Springer.
Matos, P., Rocha, J., Gonçalves, R., Santos, F., Abreu, D., Soares, H., & Martins, C. (2020). Hybrid recommendation system for young football athletes customized training. In Future of Information and Communication Conference, pp. 431–442 . Springer.
Zhang, L., & Guo, L. (2022). Application of clustering and recommendation algorithm in sports competition pressure source. Scientific Programming ,2022.
Wang, S., Cong, Y., Zhu, H., Chen, X., Qu, L., Fan, H., Zhang, Q., & Liu, M. (2020). Multi-scale context-guided deep network for automated lesion segmentation with endoscopy images of gastrointestinal tract. IEEE Journal of Biomedical and Health Informatics, 25(2), 514–525.
Article
Google Scholar
Cui, W.-H., & Ye, J. (2019). Logarithmic similarity measure of dynamic neutrosophic cubic sets and its application in medical diagnosis. Computers in Industry, 111, 198–206.
Article
Google Scholar
Liu, H., Li, X., Luo, B., Wang, Y., Ren, Y., Ma, J., & Ding, H. (2019). Distributed k-anonymity location privacy protection scheme based on blockchain. Chinese Journal of Computers, 42(5), 942–960.
Google Scholar
Bosri, R., Rahman, M. S., Bhuiyan, M. Z. A., & Al Omar, A. (2020). Integrating blockchain with artificial intelligence for privacy-preserving recommender systems. IEEE Transactions on Network Science and Engineering, 8(2), 1009–1018.
MathSciNet
Article
Google Scholar
Li, T., Wang, H., He, D., Yu, J. (2022). Blockchain-based privacy-preserving and rewarding private data sharing for iot. IEEE Internet of Things Journal.
Xu, X., Liu, W., Zhang, Y., Zhang, X., Dou, W., Qi, L., & Bhuiyan, M.Z.A. (2021). Psdf: Privacy-aware iov service deployment with federated learning in cloud-edge computing. ACM Transactions on Intelligent Systems and Technology.
Wu, Z., Shen, S., Zhou, H., Li, H., Lu, C., & Zou, D. (2021). An effective approach for the protection of user commodity viewing privacy in e-commerce website. Knowledge-Based Systems, 220, 106952.
Article
Google Scholar
Wu, Z., Li, G., Shen, S., Lian, X., Chen, E., & Xu, G. (2021). Constructing dummy query sequences to protect location privacy and query privacy in location-based services. World Wide Web, 24(1), 25–49.
Article
Google Scholar
Wu, Z., Shen, S., Lian, X., Su, X., & Chen, E. (2020). A dummy-based user privacy protection approach for text information retrieval. Knowledge-Based Systems, 195, 105679.
Article
Google Scholar
Wu, B., Chen, X., Wu, Z., Zhao, Z., Mei, Z., & Zhang, C. (2021). Privacy-guarding optimal route finding with support for semantic search on encrypted graph in cloud computing scenario. Wireless Communications and Mobile Computing, 2021.
Wang, T., Bhuiyan, M. Z. A., Wang, G., Qi, L., Wu, J., & Hayajneh, T. (2020). Preserving balance between privacy and data integrity in edge-assisted internet of things. IEEE Internet of Things Journal, 7(4), 2679–2689.
Article
Google Scholar
Nosouhi, M.R., Yu, S., Sood, K., Grobler, M., Jurdak, R., Dorri, A., & Shen, S. (2021). Ucoin: An efficient privacy preserving scheme for cryptocurrencies. IEEE Transactions on Dependable and Secure Computing, 1–1.
Zhou, X., Li, Y., & Liang, W. (2020). Cnn-rnn based intelligent recommendation for online medical pre-diagnosis support. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(3), 912–921.
Article
Google Scholar
Qi, L., Lin, W., Zhang, X., Dou, W., Xu, X., & Chen, J. (2022). A correlation graph based approach for personalized and compatible web apis recommendation in mobile app development. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2022.3168611
Article
Google Scholar
Gu, R., Chen, Y., Liu, S., Dai, H., Chen, G., Zhang, K., Che, Y., & Huang, Y. (2021). Liquid: Intelligent resource estimation and network-efficient scheduling for deep learning jobs on distributed gpu clusters. IEEE Transactions on Parallel and Distributed Systems. https://doi.org/10.1109/TPDS.2021.3138825
Article
Google Scholar
Zhou, X., Xu, X., Liang, W., Zeng, Z., & Yan, Z. (2021). Deep-learning-enhanced multitarget detection for end-edge-cloud surveillance in smart iot. IEEE Internet of Things Journal, 8(16), 12588–12596.
Article
Google Scholar
Zhou, D., Xue, X., & Zhou, Z. (2022). Sle2: The improved social learning evolution model of cloud manufacturing service ecosystem. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2022.3173053
Article
Google Scholar
Zhou, X., Liang, W., Kevin, I., Wang, K., & Yang, L. T. (2020). Deep correlation mining based on hierarchical hybrid networks for heterogeneous big data recommendations. IEEE Transactions on Computational Social Systems, 8(1), 171–178.
Article
Google Scholar
Li, J., Peng, H., Cao, Y., Dou, Y., Zhang, H., Yu, P., & He, L. (2021). Higher-order attribute-enhancing heterogeneous graph neural networks. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2021.3074654
Article
Google Scholar
Gu, R., Zhang, K., Xu, Z., Che, Y., Fan, B., Hou, H., Dai, H., Yi, L., Ding, Y., Chen, G., & Huang, Y. (2022). Fluid: Dataset abstraction and elastic acceleration for cloud-native deep learning training jobs. In The 38th IEEE International Conference on Data Engineering, 2183–2196.
Zhou, X., Yang, X., Ma, J., Kevin, I., & Wang, K. (2021). Energy efficient smart routing based on link correlation mining for wireless edge computing in iot. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3077937
Article
Google Scholar
Xue, X., Wang, S., Zhang, L., Feng, Z., & Guo, Y. (2018). Social learning evolution (sle): Computational experiment-based modeling framework of social manufacturing. IEEE Transactions on Industrial Informatics, 15(6), 3343–3355.
Article
Google Scholar
Dai, H., Wang, X., Lin, X., Gu, R., Shi, S., Liu, Y., Dou, W., & Chen, G. (2021). Placing wireless chargers with limited mobility. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2021.3136967
Article
Google Scholar
Xie, R., Li, M., Miao, Z., Gu, R., Huang, H., Dai, H., & Chen, G. (2021). Hash adaptive bloom filter. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), 636–647.
Catlett, C., Beckman, P., Ferrier, N., Nusbaum, H., Papka, M. E., Berman, M. G., & Sankaran, R. (2020). Measuring cities with software-defined sensors. Journal of Social Computing, 1(1), 14–27.
Article
Google Scholar
Dai, H., Xu, Y., Chen, G., Dou, W., Tian, C., Wu, X., & He, T. (2022). Rose: Robustly safe charging for wireless power transfer. IEEE Transactions on Mobile Computing, 21(6), 2180–2197.
Article
Google Scholar
Zhou, X., Liang, W., Li, W., Yan, K., Shimizu, S., & Wang, K.I.-K. (2021). Hierarchical adversarial attacks against graph neural network based iot network intrusion detection system. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3130434
Article
Google Scholar
Nath, S., & Wu, J. (2020). Deep reinforcement learning for dynamic computation offloading and resource allocation in cache-assisted mobile edge computing systems. Intelligent and Converged Networks, 1(2), 181–198.
Article
Google Scholar
Qi, L.,Yang, Y.,Zhou, X.,Rafique, W., & Ma, J. (2021). Fast anomaly identification based on multi-aspect data streams for intelligent intrusion detection toward secure industry 4.0. IEEE Transactions on Industrial Informatics .https://doi.org/10.1109/TII.2021.3139363
Evans, J. (2020). Social computing unhinged. Journal of Social Computing, 1(1), 1–13.
Article
Google Scholar
Bouras, M. A., Farha, F., & Ning, H. (2020). Convergence of computing, communication, and caching in internet of things. Intelligent and Converged Networks, 1(1), 18–36.
Article
Google Scholar