Alsellami, B. M., & Deshmukh, P. D. (2021). The recent trends in biometric traits authentication based on internet of things (IoT). In 2021 international conference on artificial intelligence and smart systems (ICAIS) (pp. 1359–1365).
Abuhamad, M., Abusnaina, A., Nyang, D., & Mohaisen, D. (2020). Sensor-based continuous authentication of smartphones’users using behavioral biometrics: A contemporary survey. IEEE Internet of Things Journal, 8(1), 65–84.
Article
Google Scholar
Muaaz, M., & Mayrhofer, R. (2017). Smartphone-based gait recognition: From authentication to imitation. IEEE Transactions on Mobile Computing, 16(11), 3209–3221. https://doi.org/10.1109/TMC.2017.2686855
Article
Google Scholar
Shrestha, B., Mohamed, M., & Saxena, N. (2019). Zemfa: Zero-effort multi-factor authentication based on multi-modal gait biometrics. In: 2019 17th international conference on privacy, security and trust (PST) (pp. 1–10)
Ratha, N. K., Connell, J. H., Bolle, R. M. (2001). An analysis of minutiae matching strength. In: International conference on audio-and video-based biometric person authentication (pp. 223–228). Springer
Brüsch, A., Nguyen, N., Schürmann, D., Sigg, S., & Wolf, L. (2020). Security properties of gait for mobile device pairing. IEEE Transactions on Mobile Computing, 19(3), 697–710. https://doi.org/10.1109/TMC.2019.2897933
Article
Google Scholar
Revadigar, G., Javali, C., Xu, W., Vasilakos, A. V., Hu, W., & Jha, S. (2017). Accelerometer and fuzzy vault-based secure group key generation and sharing protocol for smart wearables. IEEE Transactions on Information Forensics and Security, 12(10), 2467–2482. https://doi.org/10.1109/TIFS.2017.2708690
Article
Google Scholar
Nandakumar, K., Jain, A. K., & Pankanti, S. (2007). Fingerprint-based fuzzy vault: Implementation and performance. IEEE Transactions on Information Forensics and Security, 2(4), 744–757. https://doi.org/10.1109/TIFS.2007.908165
Article
Google Scholar
Nandakumar, K., & Jain, A. K. (2008). Multibiometric template security using fuzzy vault. In 2008 IEEE second international conference on biometrics: Theory, applications and systems (pp. 1–6)
Zhang, Z., Wang, H., Vasilakos, A. V., & Fang, H. (2012). Ecg-cryptography and authentication in body area networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1070–1078. https://doi.org/10.1109/TITB.2012.2206115
Article
Google Scholar
Venkatasubramanian, K. K., Banerjee, A., & Gupta, S. K. S. (2010). Pska: Usable and secure key agreement scheme for body area networks. IEEE Transactions on Information Technology in Biomedicine, 14(1), 60–68. https://doi.org/10.1109/TITB.2009.2037617
Article
Google Scholar
Hoang, T., & Choi, D. (2014). Secure and privacy enhanced gait authentication on smart phone. The Scientific World Journal
Mjaaland, B. B. (2009). Gait mimicking: Attack resistance testing of gait authentication systems. Master’s Thesis, Institutt for Telematikk.
Liu, L.-F., Jia, W., & Zhu, Y.-H. (2009). Survey of gait recognition. In International conference on intelligent computing (pp. 652–659). Springer
Murray, M. P. (1967). Gait as a total pattern of movement: Including a bibliography on gait. American Journal of Physical Medicine & Rehabilitation, 46(1), 290–333.
Google Scholar
Ailisto, H. J., Lindholm, M., Mantyjarvi, J., Vildjiounaite, E., & Makela, S.-M. (2005). Identifying people from gait pattern with accelerometers. In Biometric technology for human identification II (Vol. 5779, pp. 7–15). International Society for Optics and Photonics
Jin, R., Shi, L., Zeng, K., Pande, A., & Mohapatra, P. (2015). Magpairing: Pairing smartphones in close proximity using magnetometers. IEEE Transactions on Information Forensics and Security, 11(6), 1306–1320.
Article
Google Scholar
Morris, S. J. (2004). A shoe-integrated sensor system for wireless gait analysis and real-time therapeutic feedback. PhD Thesis, Massachusetts Institute of Technology
Huang, B., Chen, M., Huang, P., & Xu, Y. (2007). Gait modeling for human identification. In Proceedings 2007 IEEE international conference on robotics and automation (pp. 4833–4838)
Gafurov, D. (2007). A survey of biometric gait recognition: Approaches, security and challenges. In Annual Norwegian computer science conference (pp. 19–21)
Heinz, E. A., Kunze, K. S., Sulistyo, S., Junker, H., Lukowicz, P., & Tröster, G. (2003). Experimental evaluation of variations in primary features used for accelerometric context recognition. In European symposium on ambient intelligence (pp. 252–263). Springer
Sprager, S., & Zazula, D. (2009). A cumulant-based method for gait identification using accelerometer data with principal component analysis and support vector machine. WSEAS Transactions on Signal Processing, 5(11), 369–378.
Google Scholar
Kwapisz, J. R., Weiss, G. M., & Moore, S. A. (2010). Cell phone-based biometric identification. In 2010 fourth IEEE international conference on biometrics: Theory applications and systems (BTAS) (pp. 1–7). IEEE
Nickel, C. (2012). Accelerometer-based biometric gait recognition for authentication on smartphones. PhD thesis, Technische Universität
Zhong, Y., Deng, Y., & Meltzner, G. (2015). Pace independent mobile gait biometrics. In 2015 IEEE 7th international conference on biometrics theory, applications and systems (BTAS) (pp. 1–8). IEEE
Qin, Z., Huang, G., Xiong, H., Qin, Z., & Choo, K.-K.R. (2021). A fuzzy authentication system based on neural network learning and extreme value statistics. IEEE Transactions on Fuzzy Systems, 29(3), 549–559. https://doi.org/10.1109/TFUZZ.2019.2956896
Article
Google Scholar
Stang, Ø. (2007). Gait analysis: Is it easy to learn to walk like someone else? Master’s thesis
Gafurov, D., Snekkenes, E., & Bours, P. (2007). Spoof attacks on gait authentication system. IEEE Transactions on Information Forensics and Security, 2(3), 491–502. https://doi.org/10.1109/TIFS.2007.902030
Article
Google Scholar
Mjaaland, B. B., Bours, P., Gligoroski, D. (2010). Walk the walk: Attacking gait biometrics by imitation. In International conference on information security (pp. 361–380). Springer
Kumar, R., Phoha, V. V., & Jain, A. (2015). Treadmill attack on gait-based authentication systems. In 2015 IEEE 7th international conference on biometrics theory, applications and systems (BTAS) (pp. 1–7)
Mohamed, M., Shrestha, B., & Saxena, N. (2017). Smashed: Sniffing and manipulating android sensor data for offensive purposes. IEEE Transactions on Information Forensics and Security, 12(4), 901–913. https://doi.org/10.1109/TIFS.2016.2620278
Article
Google Scholar
Mjaaland, B. B. (2010). The plateau: Imitation attack resistance of gait biometrics. In IFIP working conference on policies and research in identity management (pp. 100–112). Springer
Fernandez-Lopez, P., Sanchez-Casanova, J., Liu-Jimenez, J., & Morcillo-Marin, C. (2017). Influence of walking in groups in gait recognition. In 2017 international Carnahan conference on security technology (ICCST) (pp. 1–6)
Fernandez-Lopez, P., Kiyokawa, K., Wu, Y., & Liu-Jimenez, J. (2018). Influence of walking speed and smartphone position on gait recognition. In 2018 international Carnahan conference on security technology (ICCST) (pp. 1–5).
Anwary, A. R., Yu, H., & Vassallo, M. (2018). Optimal foot location for placing wearable imu sensors and automatic feature extraction for gait analysis. IEEE Sensors Journal, 18(6), 2555–2567. https://doi.org/10.1109/JSEN.2017.2786587
Article
Google Scholar
Lyu, P., Cai, W., & Wang, Y. (2022). Active attack that exploits biometric similarity difference and basic countermeasures. In W. Bao, X. Yuan, L. Gao, T. H. Luan, & D. B. J. Choi (Eds.), Ad hoc networks and tools for IT (pp. 81–95). Springer.
Chapter
Google Scholar