Skip to main content

Advertisement

Log in

Dynamic energy-efficient surveillance routing in uncertain group-based industrial wireless sensor networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Smart factories in harsh large-scale environments are achieved by installation of group-based industrial wireless sensor networks (GIWSNs), in which a group of sensors are deployed on each machine target, for security and saving deployment time. In GIWSNs, enormous data for production (e.g., 3D digital twin and automated optical inspection images) and surveillance is transmitted frequently among multiple machines, and consumes huge energy. Furthermore, a real-world factory whose radio environment is interfered by mobile devices is dynamic and uncertain. Therefore, this paper investigates reliable energy-efficient routing for surveillance in dynamic uncertain GIWSNs, and further proposes a fuzzy improved global-best harmony search approach, where improved operators are integrated to efficiently explore the search space locally and globally; and a fuzzy evaluation scheme is employed to address uncertain factors. Through simulation under various parameter settings, this approach can find reliable routing in dynamic environments, and shows high performance as compared with other approaches. In addition, this approach can always find the reliable surveillance routing under various data amounts, while activating fewer crucial sensors to effectively reduce energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee, J., Kwon, T., & Song, J. (2010). Group connectivity model for industrial wireless sensor networks. IEEE Transactions on Industrial Electronics, 57(5), 1835–1844.

    Article  Google Scholar 

  2. El-Fouly, F. H., & Ramadan, R. A. (2020). Real-time energy-efficient reliable traffic aware routing for industrial wireless sensor networks. IEEE Access, 8, 58130–58145.

    Article  Google Scholar 

  3. Collotta, M., Pau, G., & Maniscalco, V. (2017). A fuzzy logic approach by using particle swarm optimization for effective energy management in IWSNs. IEEE Transactions on Industrial Electronics, 64(12), 9496–9506.

    Article  Google Scholar 

  4. Park, J., & Sahni, S. (2006). An online heuristic for maximum lifetime routing in wireless sensor networks. IEEE Transactions on Computers, 55(8), 1048–1056.

    Article  Google Scholar 

  5. Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. K. (2013). Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.

    Article  Google Scholar 

  6. Al-Mousawi, A. J. (2020). Evolutionary intelligence in wireless sensor network: Routing, clustering, localization and coverage. Wireless Networks, 26, 5595–5621.

    Article  Google Scholar 

  7. El-Abd, M. (2013). An improved global-best harmony search algorithm. Applied Mathematics and Computation, 222, 94–106.

    Article  MATH  Google Scholar 

  8. Ouyang, H. B., Gao, L. Q., Li, S., Kong, X. Y., Wang, Q., & Zou, D. X. (2017). Improved harmony search algorithm: LHS. Applied Soft Computing, 53, 133–167.

    Article  Google Scholar 

  9. Wang, D., Mukherjee, M., Shu, L., Chen, Y., & Hancke, G. (2017). Sleep scheduling for critical nodes in group-based industrial wireless sensor networks. In Proceedings of IEEE International Conference on Communications Workshops (ICC Workshops), pp. 694–698.

  10. Lin, C., Deng, D. J., Chen, Z. Y., & Chen, K. C. (2016). Key design of driving industry 4.0: Joint energy-efficient deployment and scheduling in group-based industrial wireless sensor networks. IEEE Communications Magazine, 54(10), 46–52.

    Article  Google Scholar 

  11. Shu, L., Wang, L., Niu, J., Zhu, C., & Mukherjee, M. (2017). Releasing network isolation problem in group-based industrial wireless sensor networks. IEEE Systems Journal, 11(3), 1340–1350.

    Article  Google Scholar 

  12. Guleria, K., & Verma, A. K. (2019). Comprehensive review for energy efficient hierarchical routing protocols on wireless sensor networks. Wireless Networks, 25(3), 1159–1183.

    Article  Google Scholar 

  13. Kim, B., Cho, Y., & Hong, J. (2014). AWNIS: Energy-efficient adaptive wireless network interface selection for industrial mobile devices. IEEE Transactions on Industrial Informatics, 10(1), 714–729.

    Article  Google Scholar 

  14. Han, G., Liu, L., Jiang, J., Shu, L., & Hancke, G. (2017). Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 135–143.

    Article  Google Scholar 

  15. Harb, H., & Makhoul, A. (2017). Energy-efficient sensor data collection approach for industrial process monitoring. IEEE Transactions on Industrial Informatics, 14(2), 661–672.

    Article  Google Scholar 

  16. Lin, C., Han, G., Qi, X., Du, J., Xu, T., & Martinez-Garcia, M. (2020). Energy-optimal data collection for UAV-aided industrial WSN-based agricultural monitoring system: A clustering compressed sampling approach. IEEE Transactions on Industrial Informatics, 17, 4411–4420.

    Article  Google Scholar 

  17. Mukherjee, M., Shu, L., Prasad, R. V., Wang, D., & Hancke, G. P. (2019). Sleep scheduling for unbalanced energy harvesting in industrial wireless sensor networks. IEEE Communications Magazine, 57(2), 108–115.

    Article  Google Scholar 

  18. Abazeed, M., Faisal, N., & Ali, A. (2019). Cross-layer multipath routing scheme for wireless multimedia sensor network. Wireless Networks, 25(8), 4887–4901.

    Article  Google Scholar 

  19. Fang, W., Zhang, W., Chen, W., Liu, Y., & Tang, C. (2020). TMSRS: Trust management-based secure routing scheme in industrial wireless sensor network with fog computing. Wireless Networks, 26(5), 3169–3182.

    Article  Google Scholar 

  20. Liu, L., Han, G., Chan, S., & Guizani, M. (2018). An SNR-assured anti-jamming routing protocol for reliable communication in industrial wireless sensor networks. IEEE Communications Magazine, 56(2), 23–29.

    Article  Google Scholar 

  21. Zoppi, S., Van Bemten, A., Gürsu, H. M., Vilgelm, M., Guck, J., & Kellerer, W. (2018). Achieving hybrid wired/wireless industrial networks with WDetServ: Reliability-based scheduling for delay guarantees. IEEE Transactions on Industrial Informatics, 14(5), 2307–2319.

    Article  Google Scholar 

  22. Künzel, G., Indrusiak, L. S., & Pereira, C. E. (2019). Latency and lifetime enhancements in industrial wireless sensor networks: A Q-learning approach for graph routing. IEEE Transactions on Industrial Informatics, 16(8), 5617–5625.

    Article  Google Scholar 

  23. Shi, J., Sha, M., & Yang, Z. (2019). Distributed graph routing and scheduling for industrial wireless sensor-actuator networks. IEEE/ACM Transactions on Networking, 27(4), 1669–1682.

    Article  Google Scholar 

  24. Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68.

    Article  Google Scholar 

  25. Moh’d Alia, O., & Al-Ajouri, A. (2016). Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm. IEEE Sensors Journal, 17(3), 882–896.

    Article  Google Scholar 

  26. Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  27. Gao, Y., Xiao, F., Liu, J., & Wang, R. (2018). Distributed soft fault detection for interval type-2 fuzzy-model-based stochastic systems with wireless sensor networks. IEEE Transactions on Industrial Informatics, 15(1), 334–347.

    Article  Google Scholar 

  28. Yang, L., Lu, Y., Yang, S. X., Guo, T., & Liang, Z. (2007). A secure clustering protocol with fuzzy trust evaluation and outlier detection for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 107, 2411–2502.

    Google Scholar 

  29. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences (HICSS 2000), IEEE Press, pp. 1–10.

  30. Han, G., Liu, L., Jiang, J., Shu, L., & Hancke, G. (2015). Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 135–143.

    Article  Google Scholar 

  31. Veryard, L., Hagras, H., Starkey, A., & Owusu, G. (2019). A fuzzy genetic system for resilient routing in uncertain & dynamic telecommunication networks. In Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6.

  32. Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1–13.

    Article  MATH  Google Scholar 

  33. Huang, C.-L. (2004). A novel Takagi-Sugeno-based robust adaptive fuzzy sliding-mode controller. IEEE Transactions on Fuzzy Systems, 12, 676–687.

    Article  Google Scholar 

  34. IEEE 802.15 WG, IEEE Std 802.15.4–2006, Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs), 2006.

Download references

Acknowledgements

This work has been supported in part by the Ministry of Science and Technology, Taiwan, under Grants MOST 109-2221-E-009-068-MY3, MOST 108-2628-E-009-008-MY3, and MOST 110-2622-E-A49-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Hsin Chin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CC., Chin, HH., Lin, WX. et al. Dynamic energy-efficient surveillance routing in uncertain group-based industrial wireless sensor networks. Wireless Netw 28, 2597–2608 (2022). https://doi.org/10.1007/s11276-022-02984-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02984-0

Keywords

Navigation