Skip to main content

Advertisement

Log in

EDCCS: effective deterministic clustering scheme based compressive sensing to enhance IoT based WSNs

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The problem of Data acquisition in large distributed Wireless Sensor Networks (WSNs) scale is a hindrance in the growth of the Internet of Things (IoT). Recently, the combination of compressive sensing (CS) and routing techniques has attracted great interest from researchers. An open question of this approach is how to effectively integrate these technologies for specific tasks. The objective of this paper is two parts. First, we propose an effective deterministic clustering scheme based CS technique (EDCCS) for data collection in IoT based homogeneous and heterogeneous WSN to deal with the data acquisition problem, reduce the consumption of energy and increase the lifetime of network. Second, we propose random matching pursuit (RMP) as an effective CS reconstruction algorithm to improve the recovery process by reducing the error average at the base station (BS). The simulation results show that our proposed novel EDCCS scheme reduces at least 60% of the average power consumption and increases the network lifetime at least 1.3 times of the other schemes in homogeneous network while, it increases the network lifetime and residual energy by 1.9 times and 1.3 times respectively, compared to the other schemes in heterogeneous network. Also, our proposed RMP algorithm reduces the error average of reconstruction at least 35% compared to other reconstruction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availibility

The datasets generated during the Simulation and Analysis of our proposed algorithm are randomly generated and also we used Intel Berkeley Research Lab Data Set. Available at: http://db.csail.mit.edu/labdata/labdata.html where, RMP algorithm is used to reconstruct the data that collected by Intel Berkeley Research Lab Data.

References

  1. Oberländer, A. M., Röglinger, M., Rosemann, M., & Kees, A. A. (2017). Conceptualizing business-to-thing interactions-A sociomaterial perspective on the Internet of Things. European Journal of Information Systems, 27, 1–17.

    Google Scholar 

  2. Krishnamurthi, R., Kumar, A., Gopinathan, D., Nayyar, A., & Qureshi, B. (2020). An overview of IoT sensor data processing, fusion, and analysis techniques. Sensors, 20(21), 6076.

    Article  Google Scholar 

  3. Xu, L. (2011). Enterprise systems: State-of-the-art and future trends. IEEE transactions on industrial informatics 7(4), 630640.

    Google Scholar 

  4. Ejaz, A., Yaqoob, I., Gani, A., Imran, M., Guizani, M., Rabbat, M., & Nowak, R. (2016). Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wireless Communications, 23, 10–16.

    Article  Google Scholar 

  5. Zheng, J., Simplot-Ryl, D., Bisdikian, C., & Mouftah, H. T. (2011). The internet of things. IEEE Communications Magazine, 49(11), 3031.

    Article  Google Scholar 

  6. Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable of- fline optimization of industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(2), 328329.

    Article  Google Scholar 

  7. Balaji, B. S., Raja, P. V., Nayyar, A., Sanjeevikumar, P., & Pandiyan, S. (2020). Enhancement of security and handling the inconspicuousness in IoT using a simple size extensible blockchain. Energies, 13(7), 1795.

    Article  Google Scholar 

  8. Haupt, J., Bajwa, W. U., Rabbat, M., & Nowak, R. (2008). Compressed sensing for networked data: A different approach to decentralized compression. IEEE Signal Processing Magazine, 25(2), 92101.

    Article  Google Scholar 

  9. Ulusoy, A., Gurbuz, O., & Onat, A. (2011). Wireless model- based predictive networked control system over cooperative wireless network. IEEE Transactions on Industrial Informatics, 7(1), 4151.

    Article  Google Scholar 

  10. Al-Kashoash, H. A., Kharrufa, H., Al-Nidawi, Y., & Kemp, A. H. (2018). Congestion control in wireless sensor and 6LoWPAN networks: toward the Internet of Things. Wireless Networks, 25, 1–30.

    Google Scholar 

  11. Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., & Liljeberg, P. (2018). Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Generation Computer Systems, 78, 641–658.

    Article  Google Scholar 

  12. Dhumane, A. V., & Prasad, R. S. (2019). Multi-objective fractional gravitational search algorithm for energy efficient routing in IoT. Wireless Networks, 25(1), 399–413.

    Article  Google Scholar 

  13. Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable offline optimization of industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(2), 328329.

    Article  Google Scholar 

  14. Li, S., Xu, L., & Wang, X. (2013). Compressed sensing signal and data acquisition in wireless sensor networks and Internet of things. IEEE Transactions on Industrial Informatics, 9(4), 2177–2186.

    Article  Google Scholar 

  15. Kavitha, M., & Geetha, B. G. (2017). An efficient city energy management system with secure routing communication using WSN. Cluster Computing, 22, 1–12.

    Google Scholar 

  16. Candes, E., & Wakin, M. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.

    Article  Google Scholar 

  17. Baraniuk, R. (2007). Compressive sensing [Lecture Notes]. IEEE Signal Processing Magazine, 24(4), 118–121.

    Article  Google Scholar 

  18. Haupt, J., Bajwa, W., Rabbat, M., & Nowak, R. (2008). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25(2), 92–101.

    Article  Google Scholar 

  19. Luo, J., Xiang, L., Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks?. In 2010 IEEE International Conference on Communications (pp. 1-6). IEEE.

  20. Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 46-54). IEEE.

  21. Tsai, T., Lan, W., Liu, C., & Sun, M. (2013). Distributed compressive data aggregation in large-scale wireless sensor networks. Journal of Advances in Computer Networks, 1, 294.

    Google Scholar 

  22. Zhang, C., Zhang, X., Li, O., Yang, Y., & Liu, G. (2017). Dynamic clustering and compressive data gathering algorithm for energy-efficient wireless sensor networks. International Journal of Distributed Sensor Networks, 13(10), 1550147717738905.

    Article  Google Scholar 

  23. Osamy, W., Khedr, A. M., Aziza, A., & El-Sawya, A. (2018). Cluster-tree routing schemefor data gathering in periodic monitoring applications. IEEE Access, 6, 77372–77387.

    Article  Google Scholar 

  24. Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126(15), 12–28.

    Article  Google Scholar 

  25. Omar, D., & Khedr, A. M. (2019). Prolonging stability period of wireless sensor networks using compressive sensing. International Journal of Communication Networks and Information Security (IJCNIS), 11, 6.

    Google Scholar 

  26. Omar, D. M., & Khedr, A. M. (2018). ERPLBC: energy efficient routing protocol for load balanced clustering in wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 42, 145–169.

    Google Scholar 

  27. Omar, D. M., Khedr, A. M., & Agrawal, D. P. (2017). Optimized clustering protocol for balancing energy in wireless sensor networks. International Journal of Communication Networks and Information Security (IJCNIS), 9(3), 367–375.

    Google Scholar 

  28. Khedr, A. M., & Omar, D. M. (2015). SEP-CS: effective routing protocol for heterogeneous wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 26, 211–232.

    Google Scholar 

  29. Donoho, D. (2006). Compressed sensing. IEEE Transmitted In- form Theory, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ali, S., & Refaay, S. (2011). Chain-chain based routing protocol. International Journal of Computer Science Issues, 8, 694–0814.

    Google Scholar 

  31. Xie, R., & Jia, X. (2014). Transmission-efficient clustering method for wireless sensor networks using compressive sensing. IEEE Transactions on Parallel and Distributed Systems, 25(3), 806815.

    Google Scholar 

  32. Singh, S., Chand, S., Kumar, R., Malik, A., & Kumar, B. (2016). NEECP: Novel energy-efficient clustering protocol for prolonging lifetime of WSNs. IET Wireless Sensor Systems, 6(5), 151–157.

    Article  Google Scholar 

  33. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.(2000) Energy efficient communication protocol for wireless microsensor networks, In: Proceedings of the 33rd Annual Hawaii International Conference, pp. 3005–3014

  34. Aziz, A., Salim, A., Osamy, W. (2013). Adaptive and efficient compressive sensing based technique for routing in wire- less sensor networks, In Proceedings, INTHITEN (IoT and its Enablers) Conference, pp. 3-4,

  35. Aderohunmu F.A., Deng J.D., Purvis M.K., (2011). A deterministic energy-efficient clustering protocol for wireless sensor networks, In: Proceedings of Seventh IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 341–346.

  36. Salim, A., & Osamy, W. (2015). Distributed multi chain compressive sensing based routing algorithm for wireless sensor networks. Wireless Networks, 21, 1379–1390.

    Article  Google Scholar 

  37. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks, In Proceeding of the International Workshop on SANPA,

  38. Al-Zubaidi, A. S., Ariffin, A. A., & Al-Qadhi, A. K. (2018). Enhancing the stability of the improved-LEACH routing protocol for WSNs. Journal of ICT Research & Applications, 12(1), 1–13.

    Article  Google Scholar 

  39. Smaragdakis, G., Matta, I., & Bestavros, A. (2004) SEP: A Stable ElectionProtocol for clustered heterogeneous wireless sensor networks, In Proceeding of the International Workshop on SANPA,

  40. Mittal, N., Singh, U., & Sohi, B. Singh. (2017). A stable energy efficientclustering protocol for wireless sensor networks. Wireless Networks, 23, 809–1821.

    Article  Google Scholar 

  41. Kumar, S., Kant, S., & Kumar, A. (2015). Enhanced threshold sensitive stable election protocol for heterogeneous wireless sensor network. Wireless Pers Communication, 85, 2643–2656.

    Article  Google Scholar 

  42. Luo, C., Wu, F., Sun, J., et al. (2013). An efficient compressive data gathering routing scheme for large-scale wireless sensor networks. Computer Electronical Engineering, 39(6), 19351946.

    Google Scholar 

  43. Haupt, J., Bajwa, W., & Rabbat, M. (2008). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25(2), 92–101.

    Article  Google Scholar 

  44. Chong, L., Feng, W., Jun, S., & Chang, C.(2009) Compressive data gathering for large-scale wireless sensor networks, In Proceedings of the 15th Annual International Conference on Mobile Computing and Networking, MobiCom ’09, pp. 145-156, New York, NY, USA, ACM.

  45. Duarte, M., Sarvotham, S., Wakin, M., Baron, D., & Baraniuk, R. (2005). jointsparsity models for distributed compressed sensing., Online Proceedings of the Workshop on Signal Processing with Adaptative Sparse Structured Representations (SPARS),

  46. Jin, W., ShaoJie, T., Baocai, Y., & Yang, X. (2013). Data gathering in wireless sensor networks through intelligent compressive sensing. Digital Signal Processing, 23, 1539–1548.

    MathSciNet  Google Scholar 

  47. Luo, C., Wu, F., Sun, J., et al. (2010). Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Transactions on Wireless Communications, 9(12), 37283738.

    Article  Google Scholar 

  48. Nguyen, M. T., Teague, K. A., & Rahnavard, N. (2016). CCS: energy-efficient data collection in clustered wireless sensor networks utilizing block-wise compressive sensing. Computer Networks, 106, 171185.

    Google Scholar 

  49. Nguyen MT (2013) Minimizing energy consumption in random walk routing for Wireless Sensor Networks utilizing compressed sensing, In Proceedings of the 2013 8th international conference on system of systems engineering, Maui, HI, 26, pp. 297301. New York: IEEE, June 2013.

  50. Khedr, A. M. (2015). Effective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensing. Algorithms, 8(4), 910–928.

    Article  Google Scholar 

  51. Yin, X., Neamtiu, I., Patil, S., & Andrews, S. T. (2020). Implementation-induced Inconsistency and Nondeterminism in Deterministic Clustering Algorithms. In 2020 IEEE 13th international conference on software testing, validation and verification (ICST) (pp. 231–242). IEEE.

  52. Wang, Q., Lin, D., Yang, P., & Zhang, Z. (2019). An energy-efficient compressive sensing-based clustering routing protocol for WSNs. IEEE Sensors Journal, 19(10), 3950–3960.

    Article  Google Scholar 

  53. Osamy, W., Aziz, A., & Khedr, A. M. (2021). Deterministic clustering based compressive sensing scheme for fog-supported heterogeneous wireless sensor networks. Peer Journal Computer Science, 7, e463.

    Article  Google Scholar 

  54. Tsiropoulou, E. E., Mitsis, G., & Papavassiliou, S. (2018). Interest-aware energy collection & resource management in machine to machine communications. Ad Hoc Networks, 68, 48–57.

    Article  Google Scholar 

  55. Aziz, A., Osamy, W., Khedr, A. M., & Salim, A. (2021). Chain-routing scheme with compressive sensing-based data acquisition for Internet of Things-based wireless sensor networks. IET Networks, 10(2), 43–58.

    Article  Google Scholar 

  56. Venkataramani, R., Bresler, Y. (1998). Sub-nyquist sampling of multiband signals: perfect reconstruction and bounds on aliasing error, IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), pp. 12-15, Feb.

  57. Aziz, A., Osamy, W., Khedr, A. M., & Salim, A. (2020). Iterative selection and correction based adaptive greedy algorithm for compressive sensing reconstruction. Journal of King Saud University-Computer and Information Sciences.

  58. Triantafyllou, A., Sarigiannidis, P., & Lagkas, T. D. (2018). Network protocols, schemes, and mechanisms for internet of things (iot): Features, open challenges, and trends. Wireless communications and mobile computing, 2018.

  59. Tropp, J., & Gilber, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on information theory, 53(14), 4655–4666.

    Article  MathSciNet  MATH  Google Scholar 

  60. Dai, Wei, & MilenkovicOlgica. (2009). Dai, W., & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE transactions on Information Theory, 55(5), 2230–2249.

  61. needell, D., & tropp, J. a. (2009). COSAMP: iterative signal re- covery from incomplete and inaccurate samples. Applied and computational harmonic analysis, 26(3), 301–321.

  62. Burak, N., & Erdogan, H. (2013). Compressed sensing signal recovery via forward-backward pursuit. Digital Signal Processing, 23, 1539–1548.

    Article  MathSciNet  Google Scholar 

  63. Aziz, A., Salim, A., & Osamy, W. (2014). Sparse signals reconstruction via adaptive iterative greedy algorithm. International Journal of Computer Applications, 90(17), 5–11.

    Article  Google Scholar 

  64. Heinzelman, WB. (2000). Application-specific protocol architectures for wireless networks. Diss. Massachusetts Institute of Technology.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Aziz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, A., Osamy, W., Alfawaz, O. et al. EDCCS: effective deterministic clustering scheme based compressive sensing to enhance IoT based WSNs. Wireless Netw 28, 2375–2391 (2022). https://doi.org/10.1007/s11276-022-02973-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02973-3

Keywords

Navigation