Skip to main content
Log in

3D EM data driven surrogate based design optimization of traveling wave antennas for beam scanning in X-band: an application example

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, design and optimization of a microstrip elliptic traveling wave antenna (TWA) are presented for the beam scanning in X-band as an application of 3D data driven surrogate based design optimization technique. A novel Modified Multi-Layer Perceptron (M2LP) algorithm is utilized as a fast and accurate black-box modeling and compared to the alternative Multi-Layer Perceptron (MLP), Support Vector Regression Machine (SVRM), Gradient Boosted Tree algorithms for the generation of surrogate model of the TWA design. In order to have a computationally efficient modeling, Latin-Hyper Cube Sampling LHS method is utilized to obtain the training and test data from 3D CST Microwave numerical computation tool. A novel meta-heuristic, population based optimization algorithm, Invasive Weed Optimization (IWO) is applied to build up M2LP model for the determination of the optimal geometric design parameters. The optimum TWA model has total physical size of 100 mm × 20 mm with the operation frequency band between 8.5 and 12 GHz and measured overall gain of 7.1–11.8 dBi. The steerable radiation pattern characteristic is measured to be between −70 and 25 degrees. Thus, the proposed TWA design points out superior radiation performance for X band radar applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ma, X., & Ke, L. (2020). A low-profile broadband high-gain mechanically pattern reconfigurable antenna. 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC). IEEE.

  2. Rumyancev, I. A., & Korotkov, A. S. (2019). Survey on beamforming techniques and integrated circuits for 5G systems. In 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech) (pp. 76–80). IEEE.

  3. Ojaroudi Parchin, N., Jahanbakhsh Basherlou, H., Al-Yasir, Y. I., Abdulkhaleq, A. M., & Abd-Alhameed, R. A. (2020). Reconfigurable antennas: Switching techniques—a survey. Electronics, 9(2), 336.

    Article  Google Scholar 

  4. Belen, M. A. (2018). Traveling-wave microstrip array antenna using substrate integrated wavequide. 2018 22nd International Microwave and Radar Conference (MIKON), Poznan, pp. 37–40.https://doi.org/10.23919/MIKON.2018.8405228

  5. Menzel, W. (1979). A new travelling-wave antenna in microstrip. AEU, 33(4), 137–140.

    Google Scholar 

  6. Jackson, D. R., & Oliner, A. A. (1988). A leaky-wave analysis of the high-gain printed antenna configuration. IEEE Transactions on Antennas and Propagation, 36(7), 905–910.

    Article  Google Scholar 

  7. Podilchak, S. K., Freundorfer, A. P., Antar, Y. M. M., & Mahmoud, S. F. (2010). Dielectric based leaky-wave antenna for high gain using a printed surfacewave source. Electronics Letters, 46(23), 1537–1539.

    Article  Google Scholar 

  8. Mahouti, P. (2019). Design optimization of a pattern reconfigurable microstrip antenna using differential evolution and 3D EM simulation‐based neural network model. International Journal of RF and Microwave Computer-Aided Engineering, 29, e21796.

  9. Ullah, U., Slawomir, K., & Ismail, B. M. (2019). Rapid redesign and bandwidth/size tradeoffs for compact wideband circular polarization antennas using inverse surrogates and fast EM-based parameter tuning. IEEE Transactions on Antennas and Propagation, 68(1), 81–89.

  10. Du, J., & Roblin, C. (2017). Statistical modeling of disturbed antennas based on the polynomial chaos expansion. IEEE Antennas and Wireless Propagation Letters, 16, 1843–1847.

    Article  Google Scholar 

  11. Koziel, S., & Sigurdsson, A. T. (2018). Multi-fidelity EM simulations and constrained surrogate modeling for low-cost multi-objective design optimization of antennas. IET Microwaves, Antennas & Propagation, 12(13), 2025–2029.

    Article  Google Scholar 

  12. Chávez-Hurtado, J. L. (2017). Multiphysics design of high frequency circuits by polynomial surrogate modeling exploiting the multinomial theorem.

  13. Pietrenko-Dabrowska, A., & Koziel, S. (2020). Cost-efficient surrogate modeling of high-frequency structures using nested kriging with automated adjustment of model domain lateral dimensions. AEU-International Journal of Electronics and Communications, 121, 153224.

  14. Garbaya, A., Kotti, M., Drira, N., Fakhfakh, M., Tlelo-Cuautle, E., & Siarry, P. (2018). An RBF-PSO technique for the rapid optimization of (CMOS) analog circuits. In 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST) (pp. 1–4). IEEE.

  15. Güneş, F., Mehmet, A. B., Peyman, M., & Salih, D. (2016). Signal and noise modeling of microwave transistors using characteristic support vector-based sparse regression. Radioengineering, 25(3), 490–499.

  16. Liu, Z., Lesselier, D., Sudret, B., & Wiart, J. (2020). Surrogate modeling of indoor down-link human exposure based on sparse polynomial chaos expansion. International Journal for Uncertainty Quantification, 10(2).

  17. Rayas-Sanchez, J. E., & Gutierrez-Ayala, V. (2006). EM-based statistical analysis and yield estimation using linear-input and neural-output space mapping. IEEE MTT-S Int. Microwave Symp. Digest (IMS), pp. 1597–1600.

  18. Calik, N., Belen, M. A., & Mahouti, P. (2020). Deep learning base modified MLP model for precise scattering parameter prediction of capacitive feed antenna. International Journal of Numerical Modelling, 33, e2682.

  19. Mahouti, T., Yıldırım, T., & Kuşkonmaz, N. (2021). Artificial intelligence–based design optimization of nonuniform microstrip line band pass filter. International Journal of Numerical Modelling e2888.

  20. Güneş, F., Belen, A., & Belen, M. A. (2019). Microstrip tapered traveling wave antenna for wide range of beam scanning in X‐and Ku‐bands. International Journal of RF and Microwave Computer‐Aided Engineering, 29(9), e21771.

  21. Ishimaru, A. (1991). Electromagnetic wave propagation, radiation, and scattering. Prentice Hall.

    Google Scholar 

  22. Misaghi, M., & Yaghoobi, M. (2019). Improved invasive weed optimization algorithm (IWO) based on chaos theory for optimal design of PID controller. Journal of Computer Design and Engineering, 6(3), 284–295.

    Article  Google Scholar 

  23. Karimkashi, S., & Kishk, A. A. (2010). Invasive weed optimization and its features in electromagnetics. IEEE Transactions on Antennas and Propagation, 58(4), 1269–1278.

    Article  Google Scholar 

  24. Maddio, S., Pelosi, G., Righini, M., Selleri, S., & Vecchi, I. (2020). Optimization of the shape of non-planar electronically scanned arrays for IFF applications via multi-objective invasive weed optimization algorithm. Applied Computational Electromagnetics Society (ACES) Journal, 35(5).

  25. Mallahzadeh, A. R. R., Oraizi, H., & Davoodi-Rad, Z. (2008). Application of the invasive weed optimization technique for antenna configurations. Progress in Electromagnetics Research, 79, 137–150.

    Article  Google Scholar 

  26. Hayati, M., Amiri, M., & Sedighy, S. H. (2015). Design of compact and wideband suppression low pass elliptic filter by n-segment step impedance transmission line. Applied Computational Electromagnetics Society (ACES) Journal, 30(5).

  27. Mallahzadeh, A. R., & Taghikhani, P. (2011). Cosecant squared pattern synthesis for reflector antenna using a stochastic method. Applied Computational Electromagnetics Society (ACES) Journal, 26(10), 823–830.

  28. Khakzad, H. R., Sedighy, S. H., & Amirhosseini, M. K. (2013). Design of compact SITLs low pass filter by using invasive weed optimization (IWO) technique. Applied Computational Electromagnetics Society (ACES) Journal, 28(3), 228–233.

  29. Belen, A., Mahouti, P., Güneş, F., & Tari, Ö. (2021). Gain enhancement of a traditional horn antenna using 3D printed square-shaped multi-layer dielectric lens for X-band applications. Applied Computational Electromagnetics Society (ACES) Journal, 36(2).

  30. Belen, M. A., Peyman, M., Slawomir, K., Alper, Ç., & Stanislaw, S. (2021). On decomposition-based surrogate-assisted optimization of leaky wave antenna input characteristics for beam scanning applications. IEEE Access, 9, 161318–161325.

  31. LB8180, 0.8-18 GHz broadband horn antenna, (2017). Available at http://www.ainfoinc.com/en/p_ant_h_brd.asp

  32. Lyu, Y.-L., Liu, X.-X., Wang, P.-Y., et al. (2016). Leaky-wave antennas based on noncutoff substrate integrated waveguide supporting beam scanning from backward to forward. IEEE Transactions on Antennas and Propagation, 64(6), 2155–2164.

    Article  MathSciNet  Google Scholar 

  33. Lee, D., & Lim, S. (2015). Leaky-wave antenna design using quarter-mode substrate-integrated waveguide. Microwave and Optical Technology Letters, 57(5), 1234–1236.

    Article  Google Scholar 

  34. Prasad, C. S., Biswas, A., & Akhtar, M. J. (2018). Leaky wave antenna for wide range of beam scanning through broadside in dielectric image line environment. Microwave and Optical Technology Letters, 60, 1707–1713. https://doi.org/10.1002/mop.31224

    Article  Google Scholar 

  35. Belen, M., & Mahouti, P. (2018). X Band Radar Sistemleri için Mikroşerit Yürüyen Dalga Anten Tasarımı. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(4), 87–96. https://doi.org/10.21597/jist.415458

    Article  Google Scholar 

  36. Yan, S., & Li, Y. C. (2018). Design of broadband leaky-wave antenna based on permeabilitynegative transmission line. Microwave and Optical Technology Letters, 60, 699–704. https://doi.org/10.1002/mop.31044

    Article  Google Scholar 

  37. Kandwal, A., Zhang, Q., Das, R., Tang, X., & Louis, L. W. (2018). Model analysis of coupled-mode leaky-wave antenna for forward and backward frequency scanning. Microwave and Optical Technology Letters, 60, 1360–1368. https://doi.org/10.1002/mop.31164

    Article  Google Scholar 

  38. Farooq, M., Khan, M. U., & Cheema, H. M. (2018). A 5 GHz narrow-beam leaky-wave antenna using binomially distributed slot based substrate integrated waveguide. Microwave and Optical Technology Letters, 60, 2288–2293. https://doi.org/10.1002/mop.31342

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our special thanks of gratitude to antenna laboratories of Yıldız Technical University, and Aktif Neser Elektronik for providing their support for our researches. The data that support the findings of this study are openly available upon reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merih Palandoken.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belen, A., Günes, F., Palandoken, M. et al. 3D EM data driven surrogate based design optimization of traveling wave antennas for beam scanning in X-band: an application example. Wireless Netw 28, 1827–1834 (2022). https://doi.org/10.1007/s11276-022-02937-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02937-7

Keywords

Navigation