Skip to main content
Log in

Performance analysis of DP-QPSK with CO-OFDM using OSSB generation

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this work, a 16 × 100 Gbps optical single sideband (OSSB) modulation based dual polarized (DP) Mach–Zehndar Modulators and polarizer in DP-Quadrature phase shift keying (DP-QPSK) with coherent optical Orthogonal frequency division multiplexing (CO-OFDM) is proposed over inter-satellite optical wireless link (IsOWC). Carrier phase estimation, frequency offset estimation and nonlinear compensation are performed by incorporating digital signal processing (DSP) in the system. Proposed OSSB generation has ability to provide tunable optical carrier to sideband ration by adjusting polarization controller and mathematical principle is also discussed. Security of the system is improved by employing matched filter prior to DSP which has property of noise rejection i.e. waveforms can be detected in presence of jammer. Further, a comparison of proposed system is performed with QPSK-IsOWC, DP-QPSK-IsOWC, and DP-QPSK-CO-OFDM-IsOWC systems in terms of log BER, error vector magnitude, received power, and optical signal to noise ratio. It is observed that proposed system can cover 15,900 km at 100 Gbps at targeted log BER of − 2.42 and provides enhanced performance. As per author’s best of knowledge, IsOWC system with such bandwidth efficient spectrum, high performance and security has not been reported in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the relevant data is included in this article.

References

  1. Grover, A., Sheetal, A., & Dhasarathan, V. (2020). 20Gbit/s-40 GHz OFDM based LEO-GEO Radio over Inter-satellite optical wireless communication (Ro-IsOWC) system using 4-QAM modulation. Optik, 206(164295), 1–13.

    Google Scholar 

  2. Grover, A., & Sheetal, A. (2020). A 2 × 40 Gbps mode division multiplexing based inter-satellite optical wireless communication (IsOWC) system. Wireless Personal Communications, 114, 2449–2460.

    Google Scholar 

  3. Chaudhary, S., Sharma, A., & Chaudhary, N. (2016). 6 × 20 Gbps hybrid WDM–PI inter-satellite system under the influence of transmitting pointing errors. Journal of Optical Communications, 37(4), 375–379.

    Google Scholar 

  4. Singh, M., & Malhotra, J. (2019). A high-speed long-haul wavelength division multiplexing-based inter-satellite optical wireless communication link using spectral-efficient 2-D orthogonal modulation scheme. International Journal of Communication Systems, 33(6), e4293 (1-13).

    Google Scholar 

  5. Kaur, R., & Kaur, H. (2018). Comparative analysis of chirped, AMI and DPSK modulation techniques in IS-OWC system. Optik-International Journal of Light Electron Opttics, 128, 755–762.

    Google Scholar 

  6. Kaur, S., Kaur, G., Singh, G., Verma, A., & Julka, N. (2017). Polarization crosstalk suppression in wavelength division multiplexed free space optical system incorporating polarization diversity. IJCRT, 5(3), 384–390.

    Google Scholar 

  7. Kaur, S., Kumar, M., & Verma, A. (2019). An integrated high-speed full duplex coherent OFDM-PON and visible-light communication system. Journal of Optical Communication. https://doi.org/10.1515/joc-2018-0236

    Article  Google Scholar 

  8. Majeed, M. H., Ahmed, R. K., & Alhumaima, R. S. (2021). Performance analysis of inter-satellite optical wireless communication (IsOWC) system with multiple transmitters/receivers. IOP Conference Series Materials Science and Engineering, 1076, 012052.

    Google Scholar 

  9. Kaur, R., & Kaler, R. S. (2020). Performance of zero cross correlation resultant weight spectral amplitude codes in lower Earth orbit-based optical wireless channel system. International Journal of Communication Systems, 33(19), 1–10.

    Google Scholar 

  10. Zhu, Z., Zhao, S., Li, Y., & Li, X. (2014). Performance comparison of analogue inter-satellite microwave photonics link using intensity modulation with direct detection and phase modulation with interferometric detection. IET Optoelectronics, 9(2), 88–95.

    Google Scholar 

  11. Garg, D., & Nain, A. (2021). Next generation optical wireless communication: A comprehensive review. Journal of Optical Communication. https://doi.org/10.1515/joc-2020-0254

    Article  Google Scholar 

  12. Viswanath, A., Jain, V. K., & Kaur, S. (2017). Reduction in transmitter power requirement for earth-to-satellite and satellite-to-earth free space optical links with spatial diversity. Optical Quantum Electronics, 49(12), 418.

    Google Scholar 

  13. Khalighi, M., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys and Tutorials., 16(4), 2231–2258.

    Google Scholar 

  14. Sodnik, Z., Furch, B., & Lutz, H. (2010). Optical intersatellite communication. IEEE Journal of Selected Topics in Quantum Electronics, 16(5), 1051–1057.

    Google Scholar 

  15. Gill, H. K., Singh, N., & Walia, G. K. (2019). Comparative investigation of CSRZ-DQPSK, DRZ-DQPSK, and MDRZ-DQPSK modulation techniques in MDM IS-OWC system. MOTL, 61(7), 1802–1809.

    Google Scholar 

  16. Pelton, J. N. (2013). Satellite Orbits for Communications Satellites, Handbook of Satellite Applications (pp. 93–114). Springer. https://doi.org/10.1007/978-1-4419-7671-0_5

    Book  Google Scholar 

  17. Sun, Z. (2005). Networking, Satellite, Principles and protocols. Wiley.

    Google Scholar 

  18. Polishuk, A., & Arnon, S. (2004). Optimization of a laser satellite communication system with an optical preamplifer. Journal of the Optical Society of America A, 21(7), 1307–1315.

    Google Scholar 

  19. Sharma, V., & Chaudhary, S. (2014). High speed CO-OFDM-FSO transmission system. Optik, 125(6), 1761–1763.

    Google Scholar 

  20. Elsayed, E. E., Yousif, B. B., & Alzalabani, M. M. (2018). Performance enhancement of the power penalty in DWDM FSO communication using DPPM and OOK modulation. Optical Quantum Electronics, 50(7), 282.

    Google Scholar 

  21. Alatwi, A. M., Rashed, A. N. Z., & El-Gammal, E. M. (2020). Wavelength division multiplexing techniques based on multi transceiver in low earth orbit intersatellite systems. Journal of Optical Communications. https://doi.org/10.1515/joc-2019-0171

    Article  Google Scholar 

  22. Garg, N., & Tripathi, A. (2019). Comparison of different modulations with proposed hybrid WDM-TDM inter-satellite. Optical Wireless System, 2(10), 118–126.

    Google Scholar 

  23. Gill, H. K., Walia, G. K., & Grewal, N. S. (2018). A review on FSO and IS-OWC system along with mode division multiplexing. Advanced Research in Electrical and Electronic Engineering, 5(2), 105–109.

    Google Scholar 

  24. Patnaik, B., & Sahu, P. K. (2012). Inter-satellite optical wireless communication system design and simulation. IET Communications, 6(16), 2561–2567.

    Google Scholar 

  25. Chaudhary, S., Sharma, A., & Singh, V. (2019). Optimization of high speed and long haul inter-satellite communication link by incorporating diferential phase shift key and orthogonal frequency division multiplexing scheme. Optik, 176, 185–190.

    Google Scholar 

  26. SarathGanga, S., Asha, R. S., & Shaija, P. J. (2016). Design of a standardized inter satellite optical wireless communication (IsOWC) system with minimum input power. Procedia Technology, 25, 567–573.

    Google Scholar 

  27. Kaur, N., & Soni, G. (2015). Performance analysis of inter-satellite optical wireless communication (IsOWC) system by using NRZ and RZ modulation. International Journal of Scientific and Research Publications, 5(1), 1–5.

    Google Scholar 

  28. Kaur, M. (2017). Design and analysis of ultra high capacity dwdm system with and without square root module for different modulation formats. IJARCS, 8(5), 1714–1719.

    Google Scholar 

  29. Sharma, V., Singh, G., & Kaur, B. (2016). Comparison analysis of ultra, visible and infra high capacity intersatellite optical wireless communication system using distinct modulation formats. International Journal of Engineering Applied Science and Technology, 2(1), 62–66.

    Google Scholar 

  30. Gupta, A., Singh, A., & Bakshi, S. (2017). Digital signal processing of 400 Gbps CO-QPSK-WDM system over optical wireless channel for carrier phase estimation. Wireless Personal Communication, 99(1), 111–120.

    Google Scholar 

  31. Singh, M., & Malhotra, J. (2020). Modeling and performance analysis of 400 Gbps CO-OFDM based inter-satellite optical wireless communication (IsOWC) system incorporating polarization division multiplexing with enhanced detection. Wireless Personal Communications, 111(4), 1–17.

    Google Scholar 

  32. Chaudhary, S., Tang, X., Sharma, A., Lin, B., Wei, X., & Parmar, A. (2019). A cost-efective 100 Gbps SAC-OCDMA–PDM based inter-satellite communication link. Optical and Quantum Electronics, 51, 1–10.

    Google Scholar 

  33. Shivakumar, P., Malhotra, J., & Dhasarathan, V. (2020). Performance analysis of 160 Gbit/s single-channel PDM-QPSK based inter-satellite optical wireless communication (IsOWC) system. Wireless Networks, 26, 3579–3590.

    Google Scholar 

  34. Padhy, J. B., & Patnaik, B. (2019). 100 Gbps multiplexed inter-satellite optical wireless communication system. Optical and Quantum Electronics, 51(213), 2–16.

    Google Scholar 

  35. Sharma, V., & Kumar, S. (2013). Empirical evaluation of wired-and wireless-hybrid OFDM–OSSB–RoF transmission system. Optik-International Journal for Light and Electron Optics, 124(20), 4529–4532.

    Google Scholar 

  36. Sharma, V., & Kaur, A. (2014). Modeling and simulation of long reach high speed inter-satellite link (ISL). Optik, 125(2), 883–886.

    Google Scholar 

  37. Blais, S. R., & Yao, J. (2006). Optical single sideband modulation using an ultranarrow dual-transmission-band fiber bragg grating. IEEE Photonics Technology Letters, 18(21), 2230–2232.

    Google Scholar 

  38. Shen, Y., Zhang, X., & Chen, K. (2005). Optical single sideband Modulation of 11-GHz RoF system using stimulated Brillouin scattering. IEEE Photonics Technology Letters, 17(6), 1277–1279.

    Google Scholar 

  39. Smith, G. H., Novak, D., & Ahmed, Z. (1997). Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems. Electronics Letters, 33(1), 74–75.

    Google Scholar 

  40. Xue, M., Pan, S. L., & Zhao, Y. J. (2014). Optical single-sideband modulation based on a dual-drive MZM and a 120° hybrid coupler. Journal of Lightwave Technology, 32(9), 3317–3323.

    Google Scholar 

  41. Safavi, N., Hosseini, S. E., Jamshidi, K., & Plettemeier, D. (2019). Optical single sideband polarization modulator with tunable optical carrier-to-sideband ratio and its applications in microwave photonic phase shifter and optical frequency shifter. Applied Optics, 58(30), 8213–8220.

    Google Scholar 

  42. Wang, W. T., Liu, J. G., Mei, H. K., & Zhu, N. H. (2016). hase-coherent orthogonally polarized optical single sideband modulation with arbitrarily tunable optical carrier-to-sideband ratio. Optics Express, 24(1), 388–399.

    Google Scholar 

  43. Li, S., Cai, L., Gao, X., & Lu, L. (2020). Optical single-sideband modulation with tunable optical carrier-to-sideband ratio based on a dual-polarization Mach-Zehnder modulator and a polarizer. Journal of Russian Laser Research, 41, 285–290.

    Google Scholar 

  44. Zong, K., & Jiang, Z. (2018). Multiband DSB-SC modulated radio over IsOWC link with coherent homodyne detection. Proceedings of the SPIE, 10697, 106975H. https://doi.org/10.1117/12.2309301

    Article  Google Scholar 

  45. Zong, K. (2018). “Transparent intersatellite optical wireless communication link with double sideband-suppressed carrier modulation and coherent homodyne detection. Applied Optics, 57(32), 9464–9470.

    Google Scholar 

  46. Tickoo, S., & Gupta, A. (2016). A novel approach to design a bi-directional radio over fiber SCM/ASK system for future generation networks. Indian Journal of Science and Technology, 9(36), 1–6.

    Google Scholar 

  47. Yousif, B., Metwally, I. E., & Samra, A. S. (2019). A modified topology achieved in OFDM/SAC-OCDMA-based multi-diagonal code for enhancing spectral efficiency. Photonic network communications, 37(1), 90–99.

    Google Scholar 

  48. Okoshi, T., & Kikuchi, K. (1988). Coherent optical communication systems. KTK Scientific Publisher.

    Google Scholar 

  49. Kikuchi, K. (2011). Digital coherent optical communication systems: Fundamentals and future prospects. IEICE Electronics Express, 8(20), 1642–1662.

    Google Scholar 

  50. Jaradat, A., Hamamreh, J., & Arslan, H. (2019). Modulation options for OFDM-based waveforms: Classification, comparison, and future directions. IEEE Access, 7, 17263–17278.

    Google Scholar 

  51. Ali, N., Almahainy, R., Al-Shabili, A., Almoosa, N., & Abd-Alhameed, R. (2017). Analysis of improved µ-law companding technique for OFDM systems. IEEE Transactions on Consumer Electronics, 63(2), 126–134.

    Google Scholar 

  52. Shieh, W., & Djordjevic, I. (2009). OFDM for optical communications (pp. 31–52). Academic Press.

    Google Scholar 

  53. Li, L., Xiao-bo, G., & Jing, L. (2016). Analysis of performance for 100 Gbit/s dual-polarization QPSK modulation format system. Journal of Optical Communication, 37(1), 93–101.

    Google Scholar 

  54. Singh, H., Singh, H., & Arora, D. (2019). Hybrid technique to reduce PAPR in OFDM. In P. Singh, M. Paprzycki, B. Bhargava, J. Chhabra, N. Kaushal, & Y. Kumar (Eds.), Futuristic Trends in Network and Communication Technologies. FTNCT 2018. Communications in Computer and Information Science. (Vol. 958). Springer. https://doi.org/10.1007/978-981-13-3804-5_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simarpreet Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S. Performance analysis of DP-QPSK with CO-OFDM using OSSB generation. Wireless Netw 28, 1719–1730 (2022). https://doi.org/10.1007/s11276-022-02933-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02933-x

Keywords

Navigation