Skip to main content
Log in

Performance analysis of variant MIMO systems over hoyt fading channel

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Novel general performance analysis of various multiple-input multiple-output (MIMO) systems over Hoyt distribution fading channel is presented and discussed in this study. Hoyt distribution, called sometimes Nakagami-q, spans over other distributions ranging from one-sided Gaussian (\(q=0\)) to Rayleigh fading (\(q=1\)). Hoyt channel describes short-term signal variation of certain wireless communications systems, as in satellite links with strong ionospheric scintillation. Average bit error rate analysis of space shift keying (SSK), quadrature spatial modulation (QSM) and spatial multiplexing (SMX) MIMO systems over Hoyt channel is evaluated and studied in this paper. As well, the generation of accurate joint phase and envelope statistics of the MIMO Hoyt channel is conferred and discoursed. It is reported that marginal performance degradation occurs when decreasing the Hoyt q function from \(1\rightarrow 0.5\). Whereas, substantial performance losses are noticed for all considered MIMO systems when \(q<0.5\). Derived analytical and asymptotic results are corroborated with Monte Carlo simulation results, where close match is reported for wide range of system and channel parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cisco Visual Networking Index, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017-2022 , Feb. 2019.

  2. Chen, S., Sun, S., Xu, G., Su, X., & Cai, Y. (2020). Beam-space multiplexing: Practice, theory, and trends, from 4G TD-LTE, 5G, to 6G and beyond. IEEE Wireless Communications, 27(2), 162–172.

    Article  Google Scholar 

  3. Serghiou, D., Khalily, M., Singh, V., Araghi, A., & Tafazolli, R. (2020). Sub-6 GHz dual-band \(8 \times 8\) MIMO antenna for 5G smartphones. IEEE Antennas and Wireless Propagation Letters, 19(9), 1546–1550.

    Article  Google Scholar 

  4. Akyildiz, I. F., Kak, A., & Nie, S. (2020). 6G and beyond: The future of wireless communications systems. IEEE Access, 8, 133.

    Google Scholar 

  5. Basar, E. (2020). Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G. IEEE Transactions on Communications, 68(5), 3187–3196.

    Article  Google Scholar 

  6. Chytil, B. (1967). The distribution of amplitude scintillation and the conversion of scintillation indices. Journal of Atmospheric and Terrestrial Physics, 29, 1175–1177.

    Article  Google Scholar 

  7. Bischoff, K., & Chytil, B. (1969). A note on scintillation indices. Planet Space Science, 17, 1059–1066.

    Article  Google Scholar 

  8. Simon, M. K., & Alouini, M. (2005). Digital communication over fading channels. Hoboken: Wiley series in telecommunications and signal processing Wiley.

    Google Scholar 

  9. Liu, X. (2011). Optimization of satellite laser communication subject to log-square-hoyt fading. IEEE Transactions on Aerospace and Electronic Systems, 47(4), 3007–3012.

    Article  Google Scholar 

  10. Liu, X. (2012). Amount of log-square-hoyt fading in satellite optical communications. IEEE Communications Letters, 16(5), 666–669.

    Article  Google Scholar 

  11. Wu, C., Yi, X., Zhu, Y., Wang, W., You, L., & Gao, X. (2021). Channel prediction in high-mobility massive MIMO: from spatio-temporal autoregression to deep learning. IEEE Journal on Selected Areas in Communications, 39(7), 1915–1930.

    Article  Google Scholar 

  12. Ma, Z., et al. (2020). Impact of UAV rotation on MIMO channel characterization for air-to-ground communication systems. IEEE Transactions on Vehicular Technology, 69(11), 12.

    Google Scholar 

  13. Zhu, Q., et al. (2018). A novel 3D non-stationary wireless MIMO channel simulator and hardware emulator. IEEE Transactions on Communications, 66(9), 3865–3878.

    Article  Google Scholar 

  14. Avazov, N., et al. (2021). A trajectory-driven 3D non-stationary mm-Wave MIMO channel model for a single moving point scatterer. IEEE Access, 9, 115.

    Article  Google Scholar 

  15. Zhu, Q., Jiang, K., Chen, X., Zhong, W., & Yang, Y. (2018). A novel 3D non-stationary UAV-MIMO channel model and its statistical properties. China Communications, 15(12), 147–158.

    Google Scholar 

  16. Basar, E., Wen, M., Mesleh, R., Di Renzo, M., Xiao, Y., & Haas, H. (2017). Index Modulation Techniques for Next-Generation Wireless Networks. IEEE Access, 5, 16.

    Article  Google Scholar 

  17. Mesleh, R., & Alhassi, A. (2018). Space modulation techniques. Hoboken: Wiley.

    Book  Google Scholar 

  18. Younis, A., Mesleh, R., & Haas, H. (2015). Quadrature spatial modulation performance over Nakagami–m Fading Channels, IEEE Trans. on Veh. Technol.,

  19. Hedayat, A., Shah, H., & Nosratinia, A. (2005). Analysis of space-time coding in correlated fading channels. IEEE Transaction on Wireless Communication, 4(6), 2882–2891.

    Article  Google Scholar 

  20. Mesleh, R., Badarneh, O. S., Younis, A., & Haas, H. (2015). Performance analysis of spatial modulation and space-shift keying with imperfect channel estimation over generalized \(\eta {-}\mu \) fading channels. IEEE Transactions on Vehicular Technology, 64(1), 88–96.

    Article  Google Scholar 

  21. Di Renzo, M., Haas, H., & Grant, P. M. (2011). Spatial modulation for multiple-antenna wireless systems: A survey. IEEE Communicatioin and Magazine, 49(11), 182–191.

    Article  Google Scholar 

  22. Fraidenraich, G., Leveque, O., & Cioffi, J. M. (2007). On the MIMO channel capacity for the dual and asymptotic cases over Hoyt channels. IEEE Communications Letters, 11(1), 31–33.

    Article  Google Scholar 

  23. Kumar, S., & Pandey, A. (2010). Random matrix model for Nakagami-Hoyt fading. IEEE Transactions on Information Theory, 56(5), 2360–2372.

    Article  MathSciNet  Google Scholar 

  24. Ropokis, G. A., Rontogiannis, A. A., & Mathiopoulos, P. T. (2008). Quadratic forms in normal RVs: Theory and applications To OSTBCs Over Hoyt fading channels. IEEE Transactions on Wireless Communications, 7(12), 5009–5019.

    Article  Google Scholar 

  25. Romero-Jerez, J. M., & Lopez-Martinez, F. J. (2017). A new framework for the performance analysis of wireless communications under Hoyt (Nakagami- \(q\) ) fading. IEEE Transactions on Information Theory, 63(3), 1693–1702.

    Article  MathSciNet  Google Scholar 

  26. Youssef, N., Wang, C.-X., & Patzold, M. (2005). A study on the second order statistics of Nakagami-Hoyt mobile fading channels. IEEE Transactions on Vehicular Technology, 54(4), 1259–1265.

    Article  Google Scholar 

  27. Badarneh, O. S., & Mesleh, R. (2016). A comprehensive framework for quadrature spatial modulation in generalized fading scenarios. IEEE Transactions on Communication, 64(7), 2961–2970.

    Article  Google Scholar 

  28. Wolniansky, P., Foschini, G., Golden, G., & Valenzuela, R.: V-BLAST: An Architecture for Realizing Very High Data Rates over the Rich-Scattering Wireless Channel, in Unino Radio-Scientifique Internationale (URSI) Intern. Symp. on Signals, Systems, and Electronics (ISSSE), Sep. 29–Oct. 2, 1998, pp. 295–300.

  29. Mesleh, R., Ikki, S., & Aggoune, H. (2015). Quadrature spatial modulation. IEEE Transaction on Vehicular Technology, 64(6), 2738–2742.

    Article  Google Scholar 

  30. Jeganathan, J., Ghrayeb, A., Szczecinski, L., & Ceron, A. (2009). Space shift keying modulation for MIMO channels. IEEE Transaction on Wireless Communication, 8(7), 3692–3703.

    Article  Google Scholar 

  31. Proakis, J. G. (2000). Digital communications (4th ed.). USA: McGraw-Hill.

    MATH  Google Scholar 

  32. Turin, G. L. (1960). The characteristic function of Hermitian quadratic forms in complex normal variables. Biometrika, 47(1/2), 199–201.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Mesleh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesleh, R., Badarneh, O.S. Performance analysis of variant MIMO systems over hoyt fading channel. Wireless Netw 28, 1649–1656 (2022). https://doi.org/10.1007/s11276-022-02930-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02930-0

Keywords

Navigation