Skip to main content
Log in

A symmetrical SIW-based leaky-wave antenna with continuous beam scanning from backward-to-forward through broadside

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, a leaky-wave antenna based on substrate integrated waveguide is introduced with continuous beam scanning from backward-to-forward through broadside. A new two-part unit cell has been used to achieve the continuous beam without drop of gain in the broadside. This suppresses the open stop-band, the broadside radiation gain would be without a drop, and the side lobe level is kept low. The wide operating bandwidth is obtained, which covers from 11.7 to 19.6 GHz. It is observed that S11 is below − 10 dB from 11.5 to 20 GHz, and the average S21 is − 8.5 dB from 11.5 to 20 GHz. Scanning of this antenna is continuous and covers all angles between − 61° to + 34°. The gain in the direction of the broadside beam is equal to 14.2 dB and without a drop. The gain changes are low in the operating frequency and the average gain is 14.1 dB in this antenna, also the average side lobe level is − 12 dB. The average radiation efficiency of this proposed antenna is 73%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8.
Fig. 9

Similar content being viewed by others

References

  1. Kapusuz, K. Y., Berghe, A. V., Lemey, S., & Rogier, H. (2021). Partially filled half-mode substrate integrated waveguide leaky-wave antenna for 24 GHz automotive radar. IEEE Antennas and Wireless Propagation Letters, 20(1), 33–37.

    Article  Google Scholar 

  2. Zhang, P. F., Zhu, L., & Sun, S. (2020). Microstrip-line EH1/EH2-mode leaky-wave antennas with backward-to-forward scanning. IEEE Antennas and Wireless Propagation Letters, 19(12), 2363–2367.

    Article  Google Scholar 

  3. Duan, J., & Zhu, L. (2021). A transversal single-beam EH0-mode microstrip leaky wave antenna on coupled microstrip lines under differential operation. IEEE Antennas and Wireless Propagation Letters, 20(4), 592–596.

    Article  Google Scholar 

  4. Kiani, S., Rezaei, P., & Fakhr, M. (2021). A CPW-fed wearable antenna at ISM band for biomedical and WBAN applications. Wireless Network, 27, 735–745.

    Article  Google Scholar 

  5. Guo, Y. Q., Pan, Y.-M., Zheng, S., & Lu, K. (2021). A singly-fed dual-band microstrip antenna for microwave and millimeter-wave applications in 5G wireless communication. IEEE Transactions on Vehicular Technology, 70(6), 5419–5430.

    Article  Google Scholar 

  6. Karmokar, D. K., Chen, S., Thalakotuna, D., et al. (2020). Continuous backward-to-forward scanning 1-D slot-array leaky-wave antenna with improved gain. IEEE Antennas and Wireless Propagation Letters, 19(1), 89–93.

    Article  Google Scholar 

  7. Ranjan, R., & Ghosh, J. (2019). SIW-based leaky-wave antenna supporting wide range of beam scanning through broadside. IEEE Antennas and Wireless Propagation Letters, 18(4), 606–610.

    Article  MathSciNet  Google Scholar 

  8. Yang, G., & Zhang, S. (2021). A dual-band shared-aperture antenna with wide-angle scanning capability for mobile system applications. IEEE Transactions on Vehicular Technology, 70(5), 4088–4097.

    Article  Google Scholar 

  9. Rezaee, S., & Memarian, M. (2020). Analytical study of open-stopband suppression in leaky-wave antennas. IEEE Antennas and Wireless Propagation Letters, 19(2), 363–367.

    Article  Google Scholar 

  10. Ranjan, R., & Ghosh, J. (2021). Substrate integrated waveguide leaky wave antenna using longitudinal slots for seamless wide angle scanning with enhanced gain. The International Journal of RF and Microwave Computer-Aided Engineering, 31(9), e22770.

    Article  Google Scholar 

  11. Lyu, Y., Liu, X., Wang, P., et al. (2016). Leaky-wave antennas based on noncutoff substrate integrated waveguide supporting beam scanning from backward to forward. IEEE Transactions on Antennas and Propagation, 64(6), 2155–2164.

    Article  MathSciNet  Google Scholar 

  12. Abolfathi, A., Rezaei, P., & Sharifi, M. (2019). Compact bilayer substrate integrated waveguide leaky wave antenna with dumbbell-shaped slot based on the TE20 mode. The International Journal of RF and Microwave Computer-Aided Engineering, 29(8), e21791.

    Article  Google Scholar 

  13. Malekshah, A. M., Attari, A. R., & Majedi, M. S. (2020). Improved design of uniform SIW leaky wave antenna by considering the unwanted mode. IEEE Transactions on Antennas and Propagation, 68(8), 6378–6382.

    Article  Google Scholar 

  14. Tiwari, A. K., Awasthi, S., & Singh, R. K. (2020). A symmetrical periodic leaky-wave antenna with backward-to-forward scanning. IEEE Antennas and Wireless Propagation Letters, 19(4), 646–650.

    Article  Google Scholar 

  15. Sarkar, A., Sharma, A., Biswas, A., et al. (2020). Communication compact CRLH leaky-wave antenna using TE20 mode substrate integrated waveguide for broad space radiation coverage. IEEE Transactions on Antennas and Propagation, 68(10), 7202–7207.

    Article  Google Scholar 

  16. Zheng, D., Lyu, Y., & Wu, K. (2020). Longitudinally slotted SIW leaky-wave antenna for low cross-polarization millimeter-wave applications. IEEE Transactions on Antennas and Propagation, 68(2), 656–664.

    Article  Google Scholar 

  17. Ma, W., Cao, W., Shi, S., et al. (2019). Compact high gain leaky-wave antennas based on substrate integrated waveguide TE20 mode. IEEE Access, 7, 145060–145066.

    Article  Google Scholar 

  18. Karmokar, D. K., Guo, Y. J., Chen, S., & Bird, T. S. (2020). Composite right/left-handed leaky-wave antennas for wide-angle beam scanning with flexibly chosen frequency range. IEEE Transactions on Antennas and Propagation, 68(1), 100–110.

    Article  Google Scholar 

  19. Hong, R.-T., Shi, J., Guan, D.-F., Huang, X., Cao, W., & Qian, Z.-P. (2020). Air-filled substrate integrated waveguide leaky-wave antenna with wideband and fixed-beam characteristics. IEEE Transactions on Antennas and Propagation, 68(10), 7184–7189.

    Article  Google Scholar 

  20. Kiani, S., Rezaei, P., et al. (2019). Band-stop filter sensor based on SIW cavity for the non-invasive measuring of blood glucose. IET Wireless Sensor Systems, 9(1), 1–5.

    Article  Google Scholar 

  21. Kiani, S., Rezaei, P., et al. (2018). Substrate integrated waveguide quasi-elliptic bandpass filter with parallel coupled microstrip resonator. Electronics Letters, 54(10), 667–668.

    Article  Google Scholar 

  22. Kiani, S., Rezaei, P., & Fakhr, M. (2021). Dual-frequency microwave resonant sensor to detect non-invasive glucose level changes through the fingertip. IEEE Transactions on Instrumentation and Measurement, 70, 1–9.

    Article  Google Scholar 

  23. Li, A., & Luk, K. (2020). Single-layer wideband end-fire dual-polarized antenna array for device-to-device communication in 5G wireless systems. IEEE Transactions on Vehicular Technology, 69(5), 5142–5150.

    Article  Google Scholar 

  24. Fuscaldo, W., Jackson, D. R., & Galli, A. (2019). General formulas for the beam properties of 1-D bidirectional leaky-wave antennas. IEEE Transactions on Antennas and Propagation, 67(6), 3597–3608.

    Article  Google Scholar 

  25. Chen, R.-S., et al. (2021). Low-sidelobe cavity-backed slot antenna array with simplified feeding structure for vehicular communications. IEEE Transactions on Vehicular Technology, 70(4), 3652–3660.

    Article  Google Scholar 

  26. Sarkar, A., & Lim, S. (2020). 60 GHz compact larger beam scanning range PCB leaky-wave antenna using HMSIW for millimeter-wave applications. IEEE Transactions on Antennas and Propagation, 68(8), 5816–5826.

    Article  Google Scholar 

  27. Karami, F., Rezaei, P., Amn-e-Elahi, A., et al. (2021). Efficient transition hybrid two-layer feed network: Polarization diversity in a satellite transceiver array antenna. IEEE Antennas and Propagation Magazine, 63(1), 51–60.

    Article  Google Scholar 

  28. Geng, Y., Wang, J., Li, Z., et al. (2019). Dual-beam and tri-band SIW leaky-wave antenna with wide beam scanning range including broadside direction. IEEE Access, 7, 176361–176368.

    Article  Google Scholar 

  29. Lin, Y., Zhang, Y., Liu, H., et al. (2020). A simple high-gain millimeter-wave leaky-wave slot antenna based on a bent corrugated SIW. IEEE Access, 8, 91999–92006.

    Article  Google Scholar 

  30. Zhou, W., Liu, J., & Long, Y. (2019). Applications of the open-stopband suppression in various periodic leaky-wave antennas with tapered half-wavelength line. IEEE Transactions on Antennas and Propagation, 67(11), 6811–6820.

    Article  Google Scholar 

  31. Zhang, Q., Zhang, Q., Liu, H., et al. (2019). Dual-band and dual-polarized leaky-wave antenna based on slotted SIW. IEEE Antennas and Wireless Propagation Letters, 18(3), 507–511.

    Article  Google Scholar 

  32. Ali, M. Z., & Khan, Q. U. (2021). High gain backward scanning substrate integrated waveguide leaky wave antenna. IEEE Transactions on Antennas and Propagation, 69(1), 562–565.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Semnan University and the members of antenna laboratory at Iran Telecommunication Research Center (ITRC) which supported and accompanied us in conducting research and experiments. Also, the authors would like to thank the honorable reviewers and editors of the manuscript for their helpful and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Kiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, P., Rezaei, P., Kiani, S. et al. A symmetrical SIW-based leaky-wave antenna with continuous beam scanning from backward-to-forward through broadside. Wireless Netw 27, 5417–5424 (2021). https://doi.org/10.1007/s11276-021-02798-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02798-6

Keywords

Navigation