Skip to main content
Log in

Lens antenna for 3D steering of an OAM-synthesized beam

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper we present a lens antenna for 3D beam steering at microwave frequencies. Over the azimuth, 360° beam steering is realized through exploiting the orbital angular momentum (OAM) property of the electromagnetic wave components of the beam. A beam pointing toward a certain direction in the azimuth is optimized by an appropriate superposition of waves carrying different OAM orders; the beam direction is manipulated by the relative phase shifts between waves. The elevation of the beam is separately controlled by coupling the OAM wave generators to a Maxwell fish-eye lens. The proposed antenna operates with high directivity, narrow beamwidth, and low side lobe levels over a wide spatial steering range. Among the results, a stable beam of about 10.8 dBi main lobe gain, 3 dB beamwidth of 17.4°, and \(-4.7\) dB sidelobe level is synthesized over wide azimuthal and elevation ranges. The effects of the characteristics of the lens on beam steering are analyzed in detail. The method has been demonstrated to work effectively by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu, K., Cheng, Y., Li, X., Wang, H., Qin, Y., & Jiang, Y. (2016). Study on the theory and method of vortex-electromagnetic-wave-based radar imaging. IET Microwaves, Antennas and Propagation, 10, 961–968. https://doi.org/10.1049/iet-map.2015.0842

    Article  Google Scholar 

  2. Liu, K., Cheng, Y., Wang, H., Li, X., & Qin, Y. (2017). Radiation pattern synthesis for the generation of vortex electromagnetic wave. IET Microwaves, Antennas and Propagation, 11, 685–694. https://doi.org/10.1049/iet-map.2016.0681

    Article  Google Scholar 

  3. Alamayreh, A., Qasem, N., & Rahhal, J. S. (2020). General configuration MIMO system with arbitrary OAM. Electromagnetics, 40, 343–353. https://doi.org/10.1080/02726343.2020.1780378

    Article  Google Scholar 

  4. Liu, K., Cheng, Y., Li, X., & Jiang, Y. (2018). Passive OAM-based radar imaging with single-in-multiple-out mode. IEEE Microwave and Wireless Components Letters, 28, 840–842. https://doi.org/10.1109/LMWC.2018.2852146

    Article  Google Scholar 

  5. Ge, L., Kawi, M. L., & Shichang, C. (2016). 360° beam-steering reconfigurable wideband substrate integrated waveguide horn antenna. IEEE Transactions on Antennas and Propagation, 64, 5005–5011. https://doi.org/10.1109/TAP.2016.2617820

    Article  Google Scholar 

  6. Han, L., Cheng, G., Han, G., Ma, R., & Zhang, W. (2019). Electronically beam-steering antenna with active frequency-selective surface. IEEE Antennas and Wireless Propagation Letters, 18, 108–112. https://doi.org/10.1109/LAWP.2018.2882525

    Article  Google Scholar 

  7. Zheng, S., Chen, Y., Zhang, Z., Jin, X., Chi, H., Zhang, X., et al. (2018). Realization of beam steering based on plane spiral orbital angular momentum wave. IEEE Transactions on Antennas and Propagation, 66, 1352–1358. https://doi.org/10.1109/TAP.2017.2786297

    Article  Google Scholar 

  8. Qasem, N., Alamayreh, A., & Rahhal, J. S. (2021). Beam steering using OAM waves generated by a concentric circular loop antenna array. Wireless Networks, 27(4), 2431–2440. https://doi.org/10.1007/s11276-021-02589-z

    Article  Google Scholar 

  9. Cheng, W., Zhang, W., Jing, H., Gao, S., & Zhang, H. (2018). Orbital angular momentum for wireless communications. IEEE Wireless Communications, 26, 100–107. https://doi.org/10.1109/MWC.2017.1700370

    Article  Google Scholar 

  10. Liu, K., Cheng, Y., Gao, Y., Li, X., Qin, Y., & Wang, H. (2017). Super-resolution radar imaging based on experimental OAM beams. Applied Physics Letters, 110, 164102. https://doi.org/10.1063/1.4981253

    Article  Google Scholar 

  11. Mateo-Segura, C., Dyke, A., Dyke, H., Haq, S., & Hao, Y. (2014). Flat Luneburg lens via transformation optics for directive antenna applications. IEEE Transactions on Antennas and Propagation, 62, 1945–1953. https://doi.org/10.1109/TAP.2014.2302004

    Article  Google Scholar 

  12. Yang, R., Tang, W., & Hao, Y. (2011). A broadband zone plate lens from transformation optics. Optics Express, 19, 12348–12355. https://doi.org/10.1364/OE.19.012348

    Article  Google Scholar 

  13. Xue, L., & Fusco, V. (2008). Patch fed planar dielectric slab extended hemi-elliptical lens antenna. IEEE Transactions on Antennas and Propagation, 56, 661–666. https://doi.org/10.1109/TAP.2008.916974

    Article  Google Scholar 

  14. Ma, H. F., & Cui, T. J. (2010). Three-dimensional broadband and broad-angle transformation-optics lens. Nature Communications. https://doi.org/10.1038/ncomms1126

    Article  Google Scholar 

  15. Isakov, D., Stevens, C. J., Castles, F., & Grant, P. S. (2016). 3D-printed high dielectric contrast gradient index flat lens for a directive antenna with reduced dimensions. Advanced Materials Technology, 1, 1–6. https://doi.org/10.1002/admt.201600072

    Article  Google Scholar 

  16. Giddens, H., & Hao, Y. (2020). Multibeam graded dielectric lens antenna from multimaterial 3-D printing. IEEE Transactions on Antennas and Propagation, 68, 6832–6837. https://doi.org/10.1109/TAP.2020.2978949

    Article  Google Scholar 

  17. Liang, M., Ng, W. R., Chang, K., Gbele, K., Gehm, M. E., & Xin, H. (2014). A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping. IEEE Transactions on Antennas and Propagation, 62, 1799–1807. https://doi.org/10.1109/TAP.2013.2297165

    Article  Google Scholar 

  18. Massimiliano, C., Gabriele, P., Fulvio, B., Vatta, F., & Buttazzoni, G. (2019). 3D Multi-beam and null synthesis by phase-only control for 5G antenna arrays. Electronics, 8, 656–669. https://doi.org/10.3390/electronics8060656

    Article  Google Scholar 

  19. Christian, B., Marcos, M., Maria, C. S., Jordi, R., & Luis, J. (2019). A 3D printed lens antenna for 5G applications. In Proceedings of the 2019 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting, Atlanta, GA, USA, 7–12 July 2019 (pp. 1985–1986). https://doi.org/10.1109/APUSNCURSINRSM.2019.8889092

  20. Sauleau, R., & Fernandos, C. A. Review of lens antenna design and technologies for mm-wave shaped beam application. In Proceedings of the 11th international symposium on antenna technology and applied electromagnetic (ANTEM2005), St. Malo, France, 15–17 June 2005 (pp. 1–5). https://doi.org/10.1109/ANTEM.2005.7852157

  21. Dhouibi, A., Burokur, S. N., de Lustrac, A., & Priou, A. (2013). Low-profile substrate-integrated lens antenna using metamaterials. IEEE Antennas and Wireless Propagation Letters, 12, 43–46. https://doi.org/10.1109/LAWP.2015.2435992

    Article  Google Scholar 

  22. Huang, M., Yang, S., Gao, F., Quarfoth, R., & Sievenpiper, D. (2014). A 2-D multibeam half Maxwell fish-eye lens antenna using high impedance surfaces. IEEE Antennas and Wireless Propagation Letters, 13, 365–368. https://doi.org/10.1109/LAWP.2014.2306207

    Article  Google Scholar 

  23. Ansarudin, F., Abd Rahman, T., Yamada, Y., Rahman, N. H. A., & Kamardin, K. (2020). Multi beam dielectric lens antenna for 5G base station. Sensors, 20(20), 5849. https://doi.org/10.3390/s20205849

    Article  Google Scholar 

  24. Tang, M.-C., Zhou, B., & Ziolkowski, R. W. (2017). Low-profile, electrically small, Huygens source antenna with pattern-reconfigurability that covers the entire azimuthal plane. IEEE Transactions on Antennas and Propagation, 65(3), 1063–1072. https://doi.org/10.1109/TAP.2016.2647712

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, X. D., & Laurin, J. J. (2007). Fan-beam millimeter-wave antenna design based on the cylindrical Luneberg lens. IEEE Transactions on Antennas and Propagation, 55, 2147–2156. https://doi.org/10.1109/TAP.2007.901843

    Article  Google Scholar 

  26. Hua, C. Z., Yang, N., Wu, X., & Wu, W. (2012). Millimeter-wave fan-beam antenna based on step-index cylindrical homogeneous lens. IEEE Antennas and Wireless Propagation Letters, 11, 1512–1516. https://doi.org/10.1109/LAWP.2012.2234715

    Article  Google Scholar 

  27. Alamayreh, A., & Qasem, N. (2021). Vortex beam generation in microwave band. Progress in Electromagnetics Research C, 107, 49–63. https://doi.org/10.2528/PIERC20082006

    Article  Google Scholar 

  28. Berglind, E., & Bjork, G. (2014). Humblet’s decomposition of the electromagnetic angular moment in metallic waveguides. IEEE Transactions on Microwave Theory and Techniques, 62, 779–788. https://doi.org/10.1109/TMTT.2014.2308891

    Article  Google Scholar 

  29. Knudsen, H. (1953). The field radiated by a ring quasi-array of an infinite number of tangential or radial dipoles. Proceedings of the IRE, 41, 781–789. https://doi.org/10.1109/JRPROC.1953.274261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidal Qasem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamayreh, A., Qasem, N. Lens antenna for 3D steering of an OAM-synthesized beam. Wireless Netw 27, 5161–5171 (2021). https://doi.org/10.1007/s11276-021-02794-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02794-w

Keywords

Navigation