Skip to main content
Log in

A compact triband antipodal Vivaldi antenna with frequency selective surface inspired director for IoT/WLAN applications

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, an antipodal triband Vivaldi antenna operating in 2.4/5.2/5.8 GHz bands has been presented for WLAN/IoT applications. The proposed antipodal Vivaldi antenna has meander line shaped slotted lines, which are structured on the edges of exponentially tapered antipodal metallic branches and frequency selective surface (FSS) inspired director in the front part of the exponentially tapered patches on both top and bottom sides of the substrate. The meander line shaped slots on the tapered antipodal metallic branches have been utilized to improve the impedance bandwidth whereas FSS inspired director has RF performance effect on the enhancement of the gain and suppression of the side lobe levels in WLAN/IoT frequency bands. This FSS inspired director has the structural geometries in the form of meta-material based FSS consisting of an array of the sub-wavelength rectangular patches. These FSS structures are designed by global and local optimization processes using fast and efficient meta-heuristic algorithms, honey bee mating optimization (HBMO) and Differential Evolutionary. The optimized antenna model has been prototyped with the use of 3D printed substrate material based on PLA Filament—Polar White RBX-PLA-WH002 having predetermined filling form factor to obtain the desired substrate permittivity in the operating frequency bands. The simulated results of the proposed antenna design are in good agreement with the measured results. Furthermore the experimental results verify that the propotyped antipodal Vivaldi antenna has better RF performance as compared with the counterpart alternative designs in the literature. It can be concluded that the proposed antipodal Vivaldi antenna is a promising candidate for WLAN/IoT applications with high RF performance and easy integration into the microwave circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tan, M. T., & Wang, B. Z. (2015). A dual-band circularly polarized planar monopole antenna for WLAN/Wi-Fi applications. IEEE Antennas and Wireless Propagation Letters, 15, 670–673.

    Article  Google Scholar 

  2. Belen, M. A., Evranos, İ. Ö., Güneş, F., & Mahouti, P. (2017). An UWB Vivaldi antenna with the enhanced functionalities through the use of DGS and dielectric lens. In 2017 8th international conference on recent advances in space technologies (RAST) (pp. 199–201).

  3. Kenzy, A., Soliman, A., & El-Hadidy, M. (2010). Antenna compensation for UWB GPR systems applied in non-destructive testing. In IEEE middle east conference on antennas and propagation, MECAP 2010 (pp. 1–4).

  4. Belen, M. A., & Mahouti, P. (2019). Realization of dielectric sheets for gain improvement of ultra-wideband horn antennas using 3D printer technology. Applied Computational Electromagnetics Society Journal, 34(5).

  5. Mahouti, P., Güneş, F., Belen, M. A., & Çalışkan, A. (2019) A novel design of non-uniform reflectarrays with symbolic regression and its realization using 3-D printer. Applied Computational Electromagnetics Society Journal, 34(2).

  6. Patel, R., Desai, A., Upadhyaya, T., Nguyen, T. K., Kaushal, H., & Dhasarathan, V. (2020). Meandered low profile multiband antenna for wireless communication applications. Wireless Networks, 1–12

  7. Mishra, A., Ansari, J. A., Kamakshi, K., Singh, A., Aneesh, M., & Vishvakarma, B. R. (2015). Compact dualband rectangular microstrip patch antenna for 2.4/5.12-GHz wireless applications. Wireless Networks, 21(2), 347–355.

    Article  Google Scholar 

  8. Singh, A., Aneesh, M., Kamakshi, K., Mishra, A., & Ansari, J. A. (2014). Analysis of F-shape microstrip line fed dualband antenna for WLAN applications. Wireless Networks, 20(1), 133–140.

    Article  Google Scholar 

  9. Ullah, S., Ahmad, S., Khan, B. A., Tahir, F. A., & Flint, J. A. (2019). An hp-shape hexa-band antenna for multi-standard wireless communication systems. Wireless Networks, 25(3), 1361–1369.

    Article  Google Scholar 

  10. Gibson P. J. (1979). The Vivaldi aerial. In Proc. 9th Eur. Microw. Conf. (pp. 101–105).

  11. Nassar, T., & Weller, T. M. (2015). A novel method for improving antipodal Vivaldi antenna performance. IEEE Transactions on Antennas and Propagation, 63(7), 3321–3324. https://doi.org/10.1109/TAP.2015.2429749

    Article  Google Scholar 

  12. Wang, Y. W., Wang, G. M., & Zong, B. F. (2013). Directivity improvement of Vivaldi antenna using double-slot structure. IEEE Antennas and Wireless Propagation Letters, 12, 1380–1383.

    Article  Google Scholar 

  13. Elsherbini, A., Cemin, Z. M., & Song, L. A. (2007). UWB antipodal Vivaldi antennas with protruded dielectric rods for higher gain, symmetric patterns and minimal phase center variations. In IEEE Antennas and Propagation Society International Symposium, Honolulu, HI (pp. 1973–1976).

  14. Zhou, B., & Cui, T. J. (2011). Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas and Wireless Propagation Letters, 10, 326–329.

    Article  Google Scholar 

  15. Tiwari, N., & Rama Rao, T. (2017). Substrate integrated waveguide based high gain planar antipodal linear tapered slot antenna with dielectric loading for 60 GHz communications. Wireless Personal Communications, 97(1), 1385–1400.

    Article  Google Scholar 

  16. Kumar, S., Dixit, A. S., Malekar, R. R., Raut, H. D., & Shevada, L. K. (2020). Fifth generation antennas: A comprehensive review of design and performance enhancement techniques. IEEE Access, 8, 163568–163593.

    Article  Google Scholar 

  17. Engheta, N., & Ziolkowski, R. W. (2006). Metamaterials: Physics and engineering explorations. Wiley.

    Book  Google Scholar 

  18. Tanaka, T., Ishikawa, A., & Kawata, S. (2006). Unattenuated light transmission through the interface between two materials with different indices of refraction using magnetic metamaterials. Physical Review B, 73(12), 125423.

    Article  Google Scholar 

  19. Wenshan, C., & Shalaev, V. (2010). Optical metamaterials: Fundamentals and applications (pp. xi 3 (8) 9). Springer.

  20. Li, J., & Chan, C. T. (2004). Double-negative acoustic metamaterial. Physical Review E, 70(5), 055602.

    Article  Google Scholar 

  21. Fang, N., Lee, H., Sun, C., & Zhang, X. (2005). Sub-diffraction-limited optical imaging with a silver superlens. Science, 308(5721), 534–537.

    Article  Google Scholar 

  22. Yang, Z., Mei, J., Yang, M., Chan, N., & Sheng, P. (2008). Membrane-type acoustic metamaterial with negative dynamic mass. Physical Review Letters, 101(20), 204301.

    Article  Google Scholar 

  23. Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W., & Sheng P. (2012). Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communications, 756.

  24. Chen, Y., Huang, G., Zhou, X., Hu, G., & Sun, C. T. (2014). Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Membrane model. The Journal of the Acoustical Society of America, 136(3), 969–979.

    Article  Google Scholar 

  25. Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85(18), 3966.

    Article  Google Scholar 

  26. Yu, N., Genevet, P., Kats, M. A., Aieta, F., Tetienne, J.-P., Capasso, F., & Gaburro, Z. (2011). Light prop397 agation with phase discontinuities: Generalized laws of reflection and refraction. Science, 334(6054), 333–337. https://doi.org/10.1126/science.1210713

    Article  Google Scholar 

  27. Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental verification of a negative index of re400 fraction. Science, 292(5514), 77–79. https://doi.org/10.1126/science.1058847

    Article  Google Scholar 

  28. Alam, S., Misran, N., Yatim, B., & Islam, M. T. (2013). Development of electromagnetic band gap structures in the perspective of microstrip antenna design. International Journal of Antennas and Propagation. https://doi.org/10.1155/2013/507158

    Article  Google Scholar 

  29. Kim, J. H., Chun, H. J., Hong, I. P., Kim, Y. J., & Park, Y. B. (2014). Analysis of FSS radomes based on physical optics method and ray tracing technique. IEEE Antennas and Wireless Propagation Letters, 13, 868–871.

    Article  Google Scholar 

  30. Costa, F., Kazemzadeh, A., Genovesi, S., & Monorchio, A. (2016). Electromagnetic absorbers based on frequency selective surfaces. In: Forum Electromagn Res Methods Appl Technol (FER416 MAT) (Vol. 37, pp. 1–23).

  31. Chiu, C. N., Kuo, C. H., & Lin, M.-S. (2008). Bandpass shielding enclosure design using multipole slot arrays for modern portable digital devices. IEEE Transactions on Electromagnetic Compatibility, 50(4), 895–904.

    Article  Google Scholar 

  32. Sivasamy, R., Moorthy, B., Kanagasabai, M., Samsingh, V. R., & Alsath, M. G. N. (2017). A wideband frequency tunable fss for electromagnetic shielding applications. IEEE Transactions on Electromagnetic Compatibility, 60(1), 280–283.

    Article  Google Scholar 

  33. Li, D., Li, T. W., Li, E. P., & Zhang, Y. J. (2017). A 2.5-D angularly stable frequency selective surface using via-based structure for 5g emi shielding. IEEE Transactions on Electromagnetic Compatibility, 60(3), 768–775.

    Article  Google Scholar 

  34. Lin, C. W., Shen, C. K., & Wu, T. L. (2017). Ultra compact via-based absorptive frequency-selective surface for 5-GHz wi-fi with passbands and high-performance stability. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8(1), 41–49.

    Article  Google Scholar 

  35. Mahouti, P., Güneş, F., Belen, M. A., Calıskan, A., Demirel, S., & Sharipov, Z. (2016). Horn antennas with enhanced functionalities through the use of frequency selective surfaces. International Journal of RF and Microwave Computer-Aided Engineering, 26(4), 287–293.

    Article  Google Scholar 

  36. Güneş, F., Sharipov, Z., Belen, M. A., & Mahouti, P. (2017). GSM filtering of horn antennas using modified double square frequency selective surface. International Journal of RF and Microwave Computer-Aided Engineering, 27(9).

  37. Güneş, F., Belen, M. A., & Mahouti, P. (2018). Performance enhancement of a microstrip patch antenna using substrate integrated waveguide frequency selective surface for ISM band applications. Microwave and Optical Technology Letters, 60(5), 1160–1164.

    Article  Google Scholar 

  38. Belen, M. A., Evranos, İ. O., & Güneş, F. (2018). Gain enhancement of antipodal vivaldi antenna. In 2018 26th Signal processing and communications applications conference (SIU) (pp. 1–4).

  39. Jaglan, N., Gupta, S. D., Kanaujia, B. K., & Srivastava, S. (2018). Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures. Wireless Networks, 24(2), 383–393.

    Article  Google Scholar 

  40. Zhang, S., Njoku, C. C., Whittow, W. G., & Vardaxoglou, J. C. (2015). Novel 3D printed synthetic dielectric substrates. Microwave and Optical Technology Letters, 57(10), 2344–2346.

    Article  Google Scholar 

  41. Mahouti, M., Kuskonmaz, N., Mahouti, P., Belen, M. A., & Palandöken, M. Artificial neural network application for novel 3D printed nonuniform ceramic reflectarray antenna. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields.

  42. Belen, M. A., Güneş, F., Mahouti, P., & Belen, A. (2018). UWB gain enhancement of horn antennas using miniaturized frequency selective surface. Applied Computational Electromagnetics Society Journal, 33(9).

  43. Belen, M. A., Mahouti, P., & Palandöken, M. (2020). Design and realization of novel frequency selective surface loaded dielectric resonator antenna via 3D printing technology. Microwave and Optical Technology Letters, 62(5), 2004–2013.

    Article  Google Scholar 

  44. Calik, N., Belen, M. A., & Mahouti, P. Deep learning base modified MLP model for precise scattering parameter prediction of capacitive feed antenna. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, jnm.e2682.

  45. Belen, M. A., & Mahouti, P. (2018). Design and realization of quasi Yagi antenna for indoor application with 3D printing technology. Microwave and Optical Technology Letters, 60(9), 2177–2181. https://doi.org/10.1002/mop.31319

    Article  Google Scholar 

  46. Adams, J. J., Duoss, E. J., Malkowski, T., Motala, M., Ahn, B. Y., Nuzzo, R. G., Bernhard, J. T., & Lewis, J. A. (2011). Conformal printing of electrically small antennas on three-dimensional surfaces. Advanced Materials, 23(11), 1304–1413.

    Article  Google Scholar 

  47. Mei, J., Lovell, M., & Mickle, M. (2005). Formulation and processing of novel conductive solution inks in continuous inkjet printing of 3-D electric circuits. IEEE Transactions on Electronics Packaging Manufacturing, 28(3), 265–273.

    Article  Google Scholar 

  48. Shaker, G., Safavi-Naeini, S., Sangary, N., & Tentzeris, M. M. (2011). Inkjet printing of ultrawideband (UWB) antennas on paper-based substrates. IEEE Antennas and Wireless Propagation Letters, 10, 111–114. https://doi.org/10.1109/LAWP.2011.2106754

    Article  Google Scholar 

  49. Hester, J. (2015). Additively manufactured nanotechnology and origami-enabled flexible microwave electronics. Proceedings of the IEEE, 103(4), 583–606.

    Article  Google Scholar 

  50. Kimionis, J., Georgiadis, A., Isakov, M., Qi, H. J., & Tentzeris, M. M. (2015). 3D/inkjet-printed origami antennas for multi-direction RF harvesting. In IEEE MTT-S Int. Microw. Symp. (IMS), Phoenix, AZ, USA, May 2015 (pp. 1–4).

  51. Martinez, R. (2015). Planar monopole antennas on substrates fabricated through an additive manufacturing process. In 9th Eur. Conf. Antennas and Propag. (EuCAP), Lisbon, Portugal, Apr. 2015.

  52. Tehrani, B., Cook, B. S., & Tentzeris, M. M. (2015). Post-process fabrication of multilayer mm-wave on-package antennas with inkjet printing. In 2015 IEEE Int. Symp. Antennas and Propag. (APSURSI), Vancouver, BC, Canada, Jul. 2015.

  53. Zhang, X., Chen, Y., Tian, M., Liu, J., & Liu, H. (2019). A compact wide-band antipodal Vivaldi antenna design. International Journal of RF and Microwave Computer-Aided Engineering, 29, e21598. https://doi.org/10.1002/mmce.21598

    Article  Google Scholar 

  54. Güneş, F., Özkaya, U., & Demirel, S. (2009). Particle swarm intelligence applied to determination of the feasible design target for a low-noise amplifier. Microwave and Optical Technology Letters, 51(5), 1214–1218.

    Article  Google Scholar 

  55. Güneş, F., Demirel, S., & Mahouti, P. (2009). A simple and efficient honey bee mating optimization approach to performance characterization of a microwave transistor for the maximum power delivery and required noise. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 29(1), 4–20.

    Article  Google Scholar 

  56. Güneş, F., Demirel, S., & Mahouti, P. (2014). Design of a front–end amplifier for the maximum power delivery and required noise by HBMO with support vector microstrip model. Radioengineering, 23(1), 134–143.

    Google Scholar 

  57. Güneş, F., Belen, M. A., & Mahouti, P. (2018). Competitive evolutionary algorithms for building performance database of a microwave transistor. International Journal of Circuit Theory and Applications, 46(2), 244–258.

    Article  Google Scholar 

  58. Güneş, F., Karataev, T., & Demirel, S. (2017). Composite right/left-handed transmission lines in use for ultra-wideband matching of front-end amplifiers with modified cuckoo search optimization. International Journal of Numerical Modelling, 30, e2144. https://doi.org/10.1002/jnm.2144

    Article  Google Scholar 

  59. Mahouti, P. (2019). Design optimization of a pattern reconfigurable microstrip antenna using differential evolution and 3D EM simulation‐based neural network model. International Journal of RF and Microwave Computer‐Aided Engineering, 29(8), mmce.21796.

  60. Nacar, M., Özer, E., & Yılmaz, A. E. (2021). A six parameter single diode model for photovoltaic modules. Journal of Solar Energy Engineering, 143(1), 011012.

    Article  Google Scholar 

  61. Belen, A., Güneş, F., & Mahouti, P. (2020). Design optimization of a dual-band microstrip SIW antenna using differential evolutionary algorithm for X and K-band radar applications. ACES Journal, 35(7), 778–783.

    Google Scholar 

  62. Li, X., Liu, G., Zhang, Y., Sang, L., & Lv, G. (2017). A compact multi-layer phase correcting lens to improve directive radiation of Vivaldi antenna. International Journal of RF and Microwave Computer-Aided Engineering, 27, e21109. https://doi.org/10.1002/mmce.21109

    Article  Google Scholar 

  63. Elsheakh, D. M., & Abdallah, E. A. (2014). Ultrawideband Vivaldi antenna for DVB-T, WLAN, and WiMAX applications. International Journal of Antennas and Propagation. https://doi.org/10.1155/2014/761634

    Article  Google Scholar 

  64. Schneider, J., Mrnka, M., Gamec, J., Gamcova, M., & Raida, Z. (2016). Vivaldi antenna for RF energy harvesting. Radioengineering, 25(4), 666–671.

    Article  Google Scholar 

  65. Bulgaroni, R., Torres, W. M., de Araujo, H. X., Casella, I. R. S., & Capovilla, C. E. (2018). Low-cost quad-band dual antipodal Vivaldi antenna using microstrip to CPS transition. Microwave and Optical Technology Letters, 60, 2315–2320.

    Article  Google Scholar 

  66. Arezoomand, A. S., Sadeghzadeh, R. A., & Moghadasi, M. N. (2016). Investigation and improvement of the phase-center characteristics of VIVALDI’s antenna for UWB applications. Microwave and Optical Technology Letters, 58(6), 1275–1281.

    Article  Google Scholar 

  67. Natarajan, R., Kanagasabai, M., Gulam, M., & Alsath, N. (2016). Dual mode antipodal Vivaldi antenna. IET Microwaves, Antennas & Propagation, 10(15), 1643–1647. https://doi.org/10.1049/iet-map.2015.0840

    Article  Google Scholar 

  68. Li, Z., Yin, C., & Zhu, X. (2019). Compact UWB MIMO Vivaldi antenna with dual band-notched characteristics. IEEE Access, 7, 38696–38701. https://doi.org/10.1109/ACCESS.2019.2906338

    Article  Google Scholar 

  69. Ho, M., & Chen, G. (2007). Reconfigured slot-ring antenna for 2.4/5.2 GHz dual-band WLAN operations. IET Microwaves, Antennas & Propagation, 1(3), 712–717. https://doi.org/10.1049/iet-map:20045167

    Article  Google Scholar 

  70. Khan, M. R., Morsy, M. M., Khan, M. Z., & Harackiewicz, F. J. (2011). Dual band antenna for wireless network (WLAN) applications. In 2011 IEEE international symposium on antennas and propagation (APSURSI), Spokane, WA (pp. 1397–1400). https://doi.org/10.1109/APS.2011.5996553

Download references

Acknowledgements

We would like to express our special thanks of gratitude to the Aktif Neser Elektronik, for providing researcher license of CST, Microwave and Antenna Laboratory of Yıldız Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet A. Belen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güneş, F., Evranos, İ.Ö., Belen, M.A. et al. A compact triband antipodal Vivaldi antenna with frequency selective surface inspired director for IoT/WLAN applications. Wireless Netw 27, 3195–3205 (2021). https://doi.org/10.1007/s11276-021-02656-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02656-5

Keywords

Navigation