Skip to main content
Log in

Compact multi-standard planar MIMO antenna for IoT/WLAN/Sub-6 GHz/X-band applications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

A compact six-element MIMO antenna is presented for present and future wireless applications. The resonating elements of the proposed antenna are simple monopoles, which are excited by microstrip feed lines. In the MIMO antenna, two elements (Ant. 1 and Ant. 2) cover 727–1066 MHz and 5.28–6.2 GHz frequency bands for the IoT and WLAN/Wi-Fi applications, respectively. The other two elements (Ant. 3 and Ant. 4) cover 1.7–1.9 GHz band for NB-IoT applications, 5.5–5.8 GHz for Wi-Fi applications and 7.2–8.9 GHz for X-band applications. Other two elements (Ant. 5 and Ant. 6) cover 3.1–3.58 GHz band for sub-6 GHz applications. Decoupling network and stubs are used for isolation and impedance matching in the proposed MIMO antenna. The antenna shows a decent gain in all the resonating frequency bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ericsson, “IoT connections outlook,” pp. 2019–2021, 2017, [Online]. Available: https://www.ericsson.com/en/mobility-report/reports/november-2017/internet-of-things-outlook.

  2. L. Chettri and R. Bera (2019) “A Comprehensive Survey on Internet of Things (IoT) Towards 5G Wireless Systems,” IEEE Internet Things J. https://doi.org/10.1109/JIOT.2019.2948888.

  3. Durand, T. G., Visagie, L., & Booysen, M. J. (2019). Evaluation of next-generation low-power communication technology to replace GSM in IoT-applications. IET Communications, 13(16), 2533–2540. https://doi.org/10.1049/iet-com.2019.0168.

    Article  Google Scholar 

  4. Hong, W. (2017). Solving the 5G Mobile Antenna Puzzle: Assessing Future Directions for the 5G Mobile Antenna Paradigm Shift. IEEE Microwave Magazine, 18(7), 86–102. https://doi.org/10.1109/MMM.2017.2740538.

    Article  Google Scholar 

  5. Peristerianos, A., Theopoulos, A., Koutinos, A. G., Kaifas, T., Member, S., & Siakavara, K. (2016). Dual-Band Fractal Semi-Printed Element Antenna Arrays for MIMO Applications. IEEE Antennas and Wireless Propagation Letters, 15, 730–733. https://doi.org/10.1109/LAWP.2015.2470681.

    Article  Google Scholar 

  6. Saurabh, A. K., Rathore, P. S., & Meshram, M. K. (2020). Compact wideband four-element MIMO antenna with high isolation. Electronics Letters, 56(3), 117–119. https://doi.org/10.1049/el.2019.2871.

    Article  Google Scholar 

  7. Deng, J., Li, J., Zhao, L., Guo, L., & Member, S. (2017). A Dual-Band Inverted-F MIMO Antenna With Enhanced Isolation for WLAN Applications. IEEE Antennas and Wireless Propagation Letters, 16, 2270–2273. https://doi.org/10.1109/LAWP.2017.2713986.

    Article  Google Scholar 

  8. Pan, Y., Cui, Y., Li, R., Member, S., & Abstract, A. (2016). Investigation of a Triple-Band Multibeam MIMO Antenna for Wireless Access Points. IEEE Transactions on Antennas and Propagation, 64(4), 1234–1241. https://doi.org/10.1109/TAP.2016.2526082.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kong, I., et al. (2019). A Triple Band Hybrid MIMO Rectangular Dielectric Resonator Antenna for LTE Applications. IEEE Access, 7, 122900–122913. https://doi.org/10.1109/ACCESS.2019.2937987.

    Article  Google Scholar 

  10. Lte, W., & Applications, S. (2017). A Decoupled Multiband Dual-Antenna System for. IEEE Antennas and Wireless Propagation Letters, 16, 1528–1532. https://doi.org/10.1109/LAWP.2017.2647807.

    Article  Google Scholar 

  11. Choukiker, Y. K., Sharma, S. K., & Behera, S. K. (2014). Hybrid Fractal Shape Planar Monopole Antenna Covering Multiband Wireless Communications With MIMO Implementation for Handheld Mobile Devices. IEEE Transactions on Antennas and Propagation, 62(3), 1483–1488. https://doi.org/10.1109/TAP.2013.2295213.

    Article  Google Scholar 

  12. S. Shoaib, I. Shoaib, N. Shoaib, X. Chen and C. G. Parini (2014) “Design and performance study of a dual-element multiband printed monopole antenna array for MIMO terminals,” IEEE Antennas Wirel. Propag. Lett. 13. 329–332. https://doi.org/10.1109/LAWP.2014.2305798.

  13. Fernandez, S. C., Sharma, S. K., & Member, S. (2013). Multiband Printed Meandered Loop Antennas With MIMO Implementations for Wireless Routers. IEEE Antennas and Wireless Propagation Letters, 12, 96–99. https://doi.org/10.1109/LAWP.2013.2243104.

    Article  Google Scholar 

  14. Jha, K. R., Member, S., Bukhari, B., & Member, S. (2018). Compact Planar Multistandard MIMO Antenna for IoT Applications. IEEE Transactions on Antennas and Propagation, 66(7), 3327–3336. https://doi.org/10.1109/TAP.2018.2829533.

    Article  Google Scholar 

  15. Jehangir, S. S., Sharawi, M. S., & Shamim, A. (2018). Highly miniaturised semi-loop meandered dual-band MIMO antenna system. IET Microwaves, Antennas and Propagation, 12(6), 864–871. https://doi.org/10.1049/iet-map.2017.0701.

    Article  Google Scholar 

  16. Ikram, M., Nguyen-Trong, N., & Abbosh, A. (2019). Multiband MIMO microwave and millimeter antenna system employing dual-function tapered slot structure. IEEE Transactions on Antennas and Propagation, 67(8), 5705–5710. https://doi.org/10.1109/TAP.2019.2922547.

    Article  Google Scholar 

  17. Sun, Y., & Leung, K. W. (2016). Substrate-Integrated Two-Port Dual-Frequency Antenna. IEEE Transactions on Antennas and Propagation, 64(8), 3692–3697. https://doi.org/10.1109/TAP.2016.2565740.

    Article  MathSciNet  MATH  Google Scholar 

  18. Sharawi, M. S., Ikram, M., & Shamim, A. (2017). A Two Concentric Slot Loop Based Connected Array MIMO Antenna System for 4G/5G Terminals. IEEE Transactions on Antennas and Propagation, 65(12), 6679–6686. https://doi.org/10.1109/TAP.2017.2671028.

    Article  Google Scholar 

  19. Feng, B., Lai, J., Zeng, Q., & Member, S. (2018). A Dual-Wideband and High Gain Magneto-Electric Dipole Antenna and Its 3D MIMO System With Metasurface for 5G / WiMAX / WLAN / X-Band Applications. IEEE Access, 6, 33387–33398. https://doi.org/10.1109/ACCESS.2018.2848476.

    Article  Google Scholar 

  20. Chaudhuri, S., Kshetrimayum, R. S., & Sonkar, R. K. (2019). International Journal of Electronics and Communications ( AEÜ ) High inter-port isolation dual circularly polarized slot antenna with split-ring resonator based novel metasurface. AEUE - Int. J. Electron. Commun., 107, 146–156. https://doi.org/10.1016/j.aeue.2019.05.016.

    Article  Google Scholar 

  21. Kumar, A., Quaiyum, A., Kumar, B., & Kishor, J. (2019). International Journal of Electronics and Communications ( AEÜ ) Regular paper A novel ITI-shaped isolation structure placed between two-port CPW-fed dual-band MIMO antenna for high isolation. AEUE - Int. J. Electron. Commun., 104, 35–43. https://doi.org/10.1016/j.aeue.2019.03.009.

    Article  Google Scholar 

  22. Sharawi, M. S. (2017). Current Misuses and Future Prospects for Printed Multiple-Input, Multiple-Output Antenna Systems [Wireless Corner]. IEEE Antennas and Propagation Magazine, 59(2), 162–170. https://doi.org/10.1109/MAP.2017.2658346.

    Article  Google Scholar 

  23. Vaughan, R. G., & Andersen, J. B. (1988). Antenna diversity in mobile communications. IEEE Transactions on Vehicular Technology, 36, 149–172. https://doi.org/10.1109/T-VT.1987.24115.

    Article  Google Scholar 

  24. Gao, Y., et al. (2007). Design and Performance Investigation of. Configurations, 55(12), 3433–3441. https://doi.org/10.1109/TAP.2007.910353.

    Article  Google Scholar 

  25. Kulkarni, J., Desai, A., & Sim, C. Y. D. (2021). Wideband Four-Port MIMO antenna array with high isolation for future wireless systems. AEU - Int. J. Electron. Commun., 128, 153507. https://doi.org/10.1016/j.aeue.2020.153507.

    Article  Google Scholar 

  26. Torabi, Y., & Omidi, R. (2018). Novel Metamaterial Compact Planar MIMO Antenna Systems with Improved Isolation for WLAN Application. Wireless Personal Communications, 102(1), 399–410. https://doi.org/10.1007/s11277-018-5848-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Kanaujia, B.K. & Kumar, S. Compact multi-standard planar MIMO antenna for IoT/WLAN/Sub-6 GHz/X-band applications. Wireless Netw 27, 2671–2689 (2021). https://doi.org/10.1007/s11276-021-02612-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02612-3

Keywords

Navigation