Skip to main content

Real-time video frame differentiation in multihomed VANETs


Providing high quality video transmission in VANETs is very challenging due to the highly dynamic, unpredictable topology, and low bandwidth characteristics. In this article, we design a system able to optimally transmit RTP video streams in an IP-based multihomed VANET. By splitting the video through its different frame types in the array of multihomed paths from the center node of the network to the clients, the system can then send critical frames, depending on the used coding standard, through a more reliable path, in order to improve the video performance even if the quality is degraded due to bad signal reception. Two different content-based multihomed video distribution schemes have been proposed: linear selection, where the system is able to select more reliable paths for higher prioritized segments; and adaptive selection, where the paths are sensed to assess their congestion level in a real-time approach. Through real deployment of these approaches in a real vehicular scenario, with mobility, handovers and multihoming, the proposed approaches achieved a strong decrease in the loss percentage, with a maximum of approximately 60.4%, greatly improving the video quality while on the move.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22




  1. Agarwal, S., & De, S. (2016). Cognitive multihoming system for energy and cost aware video transmission. IEEE Transactions on Cognitive Communications and Networking, 2(3), 316–329.

    Article  Google Scholar 

  2. Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular Ad Hoc network. Journal of Network and Computer Applications, 37(1), 380–392.

    Article  Google Scholar 

  3. Allen, L. R., Falowo, O. E., & Chan, H. A. (2013). Mpeg video streaming solution for multihomed-terminals in heterogeneous wireless networks. In 2013 IEEE 10th consumer communications and networking conference (CCNC) (pp. 677–682).

  4. Capela, N., & Sargento, S. (2015). An intelligent and optimized multihoming approach in real and heterogeneous environments. Wireless Networks.

    Article  Google Scholar 

  5. Chau, P., Shin, J., & Jeong, J. P. (2018). Efficient scalable video multicast based on network-coded communication. Wireless Networks, 24(5), 1561–1574.

    Article  Google Scholar 

  6. Deng, Z., Liu, Y., Liu, J., Zhou, X., & Ci, S. (2017). Qoe-oriented rate allocation for multipath high-definition video streaming over heterogeneous wireless access networks. IEEE Systems Journal, 11(4), 2524–2535.

    Article  Google Scholar 

  7. Fang, Z. (2014). RTP compatible: Two models of video streaming over VANETs. thesis, University of Ottawa, Ottawa.

  8. Immich, R., Cerqueira, E., & Curado, M. (2019). Efficient high-resolution video delivery over VANETs. Wireless Networks, 25(5), 2587–2602.

    Article  Google Scholar 

  9. Ismail, M., & Zhuang, W. (2013). Statistical QoS guarantee for wireless multi-homing video transmission. In 2013 IEEE global communications conference (GLOBECOM) (pp. 4615–4620).

  10. Ismail, M., & Zhuang, W. (2014). Mobile terminal energy management for sustainable multi-homing video transmission. IEEE Transactions on Wireless Communications, 13(8), 4616–4627.

    Article  Google Scholar 

  11. Ismail, M., Zhuang, W., & Elhedhli, S. (2013). Energy and content aware multi-homing video transmission in heterogeneous networks. IEEE Transactions on Wireless Communications, 12(7), 3600–3610.

    Article  Google Scholar 

  12. Jiyan, W., Jingqi, Y., Xiaokun, W., & Junliang, C. (2013). A low latency scheduling approach for high definition video streaming over heterogeneous wireless networks. In 2013 IEEE global communications conference (GLOBECOM) (pp. 1723–1729).

  13. Kim, D., & Park, S. (2015). Adaptive video packet transmission for guaranteeing video quality on mobile devices. In 2015 IEEE 5th international conference on consumer electronics—Berlin (ICCE-Berlin) (pp. 456–458).

  14. Lee, C. H., Huang, C. M., Yang, C. C., & Lin, H. Y. (2014). The K-hop cooperative video streaming protocol using H.264/SVC over the hybrid vehicular networks. IEEE Transactions on Mobile Computing.

    Article  Google Scholar 

  15. Lopes, R., Luís, M., & Sargento, S. (2019). Real-time video transmission in multihomed vehicular networks. In 2019 IEEE vehicular networking conference (VNC).

  16. Mammeri, A., Boukerche, A., & Fang, Z. (2016). Video streaming over vehicular ad hoc networks using erasure coding. IEEE Systems Journal, 10(2), 785–796.

    Article  Google Scholar 

  17. Naeimipoor, F., & Boukerche, A. (2014). A hybrid video dissemination protocol for VANETs. In 2014 IEEE international conference on communications (ICC) (pp. 112–117). IEEE.

  18. Nightingale, J., Wang, Q., & Grecos, C. (2010). Optimised transmission of h.264 scalable video streams over multiple paths in mobile networks. IEEE Transactions on Consumer Electronics, 56(4), 2161–2169.

    Article  Google Scholar 

  19. Salvador, A., Nogueira, J., & Sargento, S. (2015). QoE Assessment of HTTP adaptive video streaming. In: S. Mumtaz, J. Rodriguez, M. Katz, C. Wang, & A. Nascimento (Eds.) Wireless internet (vol. 146, pp. 235–242). Springer, Cham. Series Title: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

  20. Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. In IEEE transactions on circuits and systems for video technology.

  21. Wiegand, T., Sullivan, G. J., Member, S., Bjøntegaard, G., Luthra, A., & Member, S. (2003). Overview of the H.264 video coding standard. IEEE Signal Processing Magazine, 13(7), 560–576.

    Article  Google Scholar 

  22. Wu, J., Yuen, C., Cheung, N., & Chen, J. (2016). Delay-constrained high definition video transmission in heterogeneous wireless networks with multi-homed terminals. IEEE Transactions on Mobile Computing, 15(3), 641–655.

    Article  Google Scholar 

  23. Wu, J., Yuen, C., Wang, M., & Chen, J. (2016). Content-aware concurrent multipath transfer for high-definition video streaming over heterogeneous wireless networks. IEEE Transactions on Parallel and Distributed Systems, 27(3), 710–723.

    Article  Google Scholar 

  24. Yao, X. W., & Wang, W. I. (2014). IPB-frame adaptive mapping mechanism for video transmission over IEEE 802.11e WLANs. ACM SIGCOMM Computer Communication Review, 44(2), 6–12.

    Article  Google Scholar 

  25. Yaqub, M. A., Ahmed, S. H., & Kim, D. (2018). Asking neighbors a favor: Cooperative video retrieval using cellular networks in VANETs. Vehicular Communications, 12, 39–49.

    Article  Google Scholar 

  26. Zhang, Z., Jing, T., Han, J., Xu, Y., Li, X., & Gao, M. (2017). Roi-based video transmission in heterogeneous wireless networks with multi-homed terminals. IEEE Access, 5, 26328–26339.

    Article  Google Scholar 

Download references


This work is supported by the European Regional Development Fund (FEDER), through the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the Portugal 2020 framework [Project 5G-PERFECTA with Nr. 038190 (POCI-01-0247-FEDER-038190)].

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rui Lopes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lopes, R., Luís, M. & Sargento, S. Real-time video frame differentiation in multihomed VANETs. Wireless Netw 27, 2559–2575 (2021).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • IP-based mobility
  • Multihoming
  • Frame type differentiation
  • Video transmission