Skip to main content

Advertisement

Log in

Multi-attribute profile-cast in mobile opportunistic networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Profile-cast provides a novel data dissemination paradigm in mobile opportunistic networks, allowing messages to be disseminated to nodes based on their profiles rather than network identities. Profile-cast has attracted increasing attention, but most of existing algorithms cannot account for some scenarios where multiple attributes need to be considered simultaneously in a profile. We focus on the multi-attribute profile-cast (MapCast) paradigm, where the node’s profile is represented by a multi-dimensional vector, which may contain multiple attributes of the node such as its behavior, interest, social information, etc. First, we consider a scenario with a fixed source node. We construct a message dissemination tree using the node encounter history. Then we propose a dissemination tree based MapCast algorithm, which adapts a heuristic search algorithm to select relay nodes so that the destination node can receive the message as soon as possible and the network has a low overhead. Second, we consider a more complex scenario with unfixed source nodes. In this scenario, the concept of group profile is defined, and a new high-efficient algorithm, group-profile based MapCast (G-MapCast), is proposed to limit the scope of message forwarding to the nodes whose profile or group profile satisfies certain delivery conditions. To further reduce the network overhead, we propose a network coding based MapCast algorithm on the basis of G-MapCast. Finally, we provide simulation results based on two real human contact datasets and verify the effectiveness and superiority of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine, 44(11), 134–141.

    Article  Google Scholar 

  2. Wu, H., & Ma, H. (2016). An optimal buffer management strategy for video transmission in mobile opportunistic networks. Ad Hoc & Sensor Wireless Networks, 34(1–4), 129–146.

    Google Scholar 

  3. Zhao, D., Ma, H., Tang, S., & Li, X. (2015). COUPON: A cooperative framework for building sensing maps in mobile opportunistic networks. IEEE Transactions on Parallel & Distributed Systems, 26(2), 392–402.

    Article  Google Scholar 

  4. Hsu, W., Dutta, D., & Helmy, A. (2008). Profile-cast: Behavior-aware mobile networking. In Proceedings of IEEE WCNC (pp. 3033–3038).

  5. Hsu, W., Dutta, D., & Helmy, A. (2012). Csi: A paradigm for behavior-oriented profile-cast services in mobile networks. Ad Hoc Networks, 10(8), 1586–1602.

    Article  Google Scholar 

  6. Ciobanu, R., Marin, R., Dobre, C., & Cristea, V. (2015). Interest-awareness in data dissemination for opportunistic networks. Ad Hoc Networks, 25, 330–345.

    Article  Google Scholar 

  7. Deng, X., Chang, L., Tao, J., Pan, J., & Wang, J. (2013) Social profile-based multicast routing scheme for delay-tolerant networks. In Proceedings of IEEE ICC (pp. 1857–1861).

  8. Borrego, C., Sánchez-Carmona, A., Li, Z., & Robles, S. (2017). Explore and wait: A composite routing-delivery scheme for relative profile-casting in opportunistic networks. Computer Networks, 123, 51–63.

    Article  Google Scholar 

  9. Pagani, E., Valerio, L., & Rossi, G. (2015). Weak social ties improve content delivery in behavior-aware opportunistic networks. Ad Hoc Networks, 25, 314–329.

    Article  Google Scholar 

  10. Ahlswede, R., Cai, N., Li, S., & Yeung, R. (2000). Network information flow. IEEE Transactions on Information Theory, 46(4), 1204–1216.

    Article  MathSciNet  Google Scholar 

  11. Fragouli, C., Boudec, J., & Widmer, J. (2006). Network coding: An instant primer. ACM SIGCOMM Computer Communication Review, 36(1), 63–68.

    Article  Google Scholar 

  12. Khreishah, A., Khalil, I., & Wu, J. (2012). Distributed network coding-based opportunistic routing for multicast. In Proceedings of ACM MobiHoc (pp. 115–124).

  13. Papanikos, N., Akestoridis, D., & Papapetrou, E. (2015). Adyton: A network simulator for opportunistic networks. https://github.com/npapanik/Adyton. Accessed 25 June 2018.

  14. Zhang, D., Ma, H., & Zhao, D. (2018). NC-MapCast: Network coding based multi-attribute profile-cast in mobile opportunistic networks. In proceddings of ITNAC (pp. 1–6).

  15. Zhao, W., Ammar, M., & Zegura, E. (2005). Multicasting in delay tolerant networks: Semantic models and routing algorithms. In Proceedings of the ACM SIGCOMM workshop on Delay-tolerant networking (pp. 268–275).

  16. Liu, Y., Bashar, A., Li, F., Wang, Y., & Liu, K. (2016). Multi-copy data dissemination with probabilistic delay constraint in mobile opportunistic device-to-device networks. In Proceedings of IEEE WoWMoM (pp. 1–9).

  17. Liu, Y., Wu, H., Xia, Y., Wang, Y., Li, F., & Yang, P. (2016). Optimal online data dissemination for resource constrained mobile opportunistic networks. IEEE Transactions on Vehicular Technology, 66(6), 5301–5315.

    Article  Google Scholar 

  18. Wang, Y., & Wu, J. (2012). A dynamic multicast tree based routing scheme without replication in delay tolerant networks. Journal of Parallel and Distributed Computing, 72(3), 424–436.

    Article  Google Scholar 

  19. Le, T., & Liu, Y. (2010). Opportunistic overlay multicast in wireless networks. In Proceedings of IEEE GLOBECOM (pp. 1–5).

  20. Sassatelli, L., & Médard, M. (2012). Inter-session network coding in delay-tolerant networks under spray-and-wait routing. In Proceedings of IEEE WiOpt (pp. 103–110).

  21. Zhang, X., Neglia, G., Kurose, J., Towsley, D., & Wang, H. (2013). Benefits of network coding for unicast application in disruption-tolerant networks. IEEE/ACM Transactions on Networking, 21(5), 1407–1420.

    Article  Google Scholar 

  22. Shrestha, N., & Sassatelli, L. (2015). Inter-session network coding in delay tolerant mobile social networks: An empirical study. In Proceedings of IEEE WoWMoM (pp. 1–6).

  23. Shrestha, N., & Sassatelli, L. (2016). Inter-session network coding-based policies for delay tolerant mobile social networks. IEEE Transactions on Wireless Communications, 15(11), 7329–7342.

    Article  Google Scholar 

  24. Yao, J., Ma, C., Wu, P., Du, G., & Yuan, Q. (2017). An opportunistic network coding routing for opportunistic networks. International Journal of Parallel Programming, 45(1), 157–171.

    Article  Google Scholar 

  25. Conan, V, Leguay, J., & Friedman, T. (2007). Characterizing pairwise inter-contact patterns in delay tolerant networks. In Proceedings of the international conference on Autonomic computing and communication systems (p. 19).

  26. Karagiannis, T., Boudec, J., & Vojnovic, M. (2010). Power law and exponential decay of intercontact times between mobile devices. IEEE Transactions on Mobile Computing, 9(10), 1377–1390.

    Article  Google Scholar 

  27. Hui, P., Yoneki, E., Chan, S., & Crowcroft, J. (2007). Distributed community detection in delay tolerant networks. In Proceedings of ACM/IEEE MobiArch (pp. 1–8).

  28. Gao, W., Li, Q., Zhao, B., & Cao, G. (2012). Social-aware multicast in disruption-tolerant networks. IEEE/ACM Transactions on Networking, 20(5), 1553–1566.

    Article  Google Scholar 

  29. Robins, G., & Zelikovsky, A. (2000). Improved steiner tree approximation in graphs. In Proceedings of SODA (pp. 770–779).

  30. Wu, B., & Chao, K. (2004). Spanning trees and optimization problems. Boca Raton: Chapman and Hall/CRC.

    Book  Google Scholar 

  31. Gong, H., Zhao, L., Wang, K., Wu, W., & Wang, X. (2015). A distributed algorithm to construct multicast trees in WSNs: An approximate steiner tree approach. In Proceedings of ACM Mobihoc (pp. 347–356).

  32. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. (2013). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 818–831.

    MathSciNet  MATH  Google Scholar 

  33. Glover, F. (1989). Tabu search-part I. ORSA Journal on computing, 1(3), 190–206.

    Article  Google Scholar 

  34. Glover, F. (1990). Tabu search-part II. ORSA Journal on computing, 2(1), 4–32.

    Article  Google Scholar 

  35. Cai, S., Lin, J., & Su, K. (2015). Two weighting local search for minimum vertex cover. In Proceedings of AAAI (pp. 1107–1113).

  36. Gendreau, M. (2003). An introduction to Tabu search. In F. Glover & G. Kochenberger Handbook of metaheuristics (pp. 37–54). Boston: Springer.

  37. Scott, J., Gass, R., Crowcroft, J., Hui, P., Diot, C., & Chaintreau, A. (2009). CRAWDAD dataset Cambridge/haggle (v. 2009-05-29). https://crawdad.org/cambridge/haggle/20090529. Accessed 25 June 2018.

  38. Eagle, N., & Pentland, A. (2005). CRAWDAD mit/reality (v. 2005-07-01). https://crawdad.org/mit/reality/20050701. Accessed 25 June 2018.

  39. Vahdat, A., & Becker, D. (2000). Epidemic routing for partially-connected ad hoc networks. Technical report, CS-200006, Duke University.

  40. Wang, Y., Li, X., & Wu, J. (2000). Multicasting in delay tolerant networks: Delegation forwarding. In Proceedings of IEEE GLOBECOM (pp. 1–5).

  41. Lindgren, A., Doria, A., & Scheln, O. (2004). Probabilistic routing in intermittently connected networks. In Proceedings of ACM SIGMOBILE workshop on Service Assurance with Partial and Intermittent Resources (pp. 19–20).

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. 2020XD-A09-1), the National Natural Science Foundation of China (Nos. 61972044, 61732017), the Funds for International Cooperation and Exchange of NSFC (No. 61720106007), and the 111 Project (No. B18008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhao, D. & Ma, H. Multi-attribute profile-cast in mobile opportunistic networks. Wireless Netw 27, 1153–1171 (2021). https://doi.org/10.1007/s11276-020-02501-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02501-1

Keywords

Navigation