Skip to main content
Log in

RAPTAP: a socio-inspired approach to resource allocation and interference management in dense small cells

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Femto Cells offer higher data rates to users within closed spaces. Dense deployment of small cells is a characteristic of pre-5G/LTE-Advanced Pro (LTE-A Pro) networks and is a precursor to the future 5G cellular networks. Combined with a Frequency Reuse Factor (FRF) of one, the dense small cell systems result in high co-tier interference which is undesirable. High interference Optimized scheduling decisions and interference management techniques are required to guarantee certain minimum data rates to the users at the cell-edge and increase the overall throughput of the system. This work presents a centralized scheduling approach that mitigates the detrimental impact of interference, thereby maximizing the overall throughput of the system. In doing so, we make use of concepts from Social theory and incorporate these ideas in the solution design. The centralized approach uses optimized scheduling algorithm (RAPTA) which takes feedback from the indoor users of all Femtos as the input and formulates a Mixed Integer Non-Linear Programming (MINLP) problem. Thereafter, the MINLP problem is relaxed and its solution carries out the Resource Block allocation and ensures optimal power transmission for every allocated resource block in all Femtos. We implement the proposed OPT algorithm on top of Proportional Fair (PF) in the Vienna Simulator. Since the RAPTA is NP-Hard and takes a considerably long time to solve the MINLP problem, we derive from it a polynomial time Heuristic algorithm (RAPTAP) which performs Resource Block allocation and sub-optimal Power transmission quite close to the RAPTA algorithm in terms of performance. RAPTAP is a two-stage approach each of which is inspired by ideas from two different strands of Sociological theory. We demonstrate through experiments that the proposed RAPTA + PF achieves 60.67% improvement in the services offered to the mobile users when compared to the classic PF algorithm with Soft Fractional Frequency Reuse (SFFR) interference management technique in the built environment. The Socio-inspired RAPTAP performs almost as well as the RAPTA + PF algorithm, with only a marginal 4% drop in the overall system throughput as compared to the latter. Further, we evaluate the RAPTAP heuristic in scenarios involving mobile users and demonstrate 14.52% improvement when compared to classic PF algorithm with Fractional Frequency Reuse-Full Isolation (FFR-FI) interference management. Finally, we compare the proposed Socio-inspired RAPTAP + PF with two state-of-the-art algorithms, viz., a Genetic Algorithm approach to resource allocation (NSGA-UDN) and a recent work on LTE-Unlicensed (LTE-U)  +  PF. Proposed Socio-inspired solution outperforms the LTE-U + PF and NSGA-UDN by 28.26% and 31.41%, respectively, in terms of throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. CISCO Visual Networking Index: https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html

  2. Nielsen, S. (2012). Future Radio in 3GPP: “LTE evolving towards local area in release 12 and beyond”. Espoo: Nokia Corporation.

    Google Scholar 

  3. Future Radio in 3GPP: “Views on rel-12 and onwards for lte and umts”. Huawei Technologies (2012).

  4. Small Cells Forum: http://smallcellforum.org/smallcellforum.

  5. Qualcomm Inc: Enterprise multi-femtocell deployment guidelines (2011).

  6. Ghosh, S., Sathya, V., Ramamurthy, A., Akilesh, B., & Tamma, B. R. (2017). A novel resource allocation and power control mechanism for hybrid access femtocells. Computer Communications, 109, 53–75.

    Article  Google Scholar 

  7. Saquib, N., Hossain, E., Le, L. B., & Kim, D. I. (2012). Interference management in OFDMA femtocell networks: Issues and approaches. IEEE Wireless Communications, 19(3), 86–95.

    Article  Google Scholar 

  8. Sathya, V., Ramamurthy, A., & Reddy, B. (2014). On placement and dynamic power control of femtocells in lte hetnets. In GLOBECOM, IEEE.

  9. Sathya, V., Ramamurthy, A., & Tamma, B. (2015). Joint placement and power control of LTE femto base stations in enterprise environments. In 2015 international conference on computing, networking and communications (ICNC).

  10. Ding, M., et al. (2017). On the performance of practical ultra-dense networks: The major and minor factors. In IEEE international symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt).

  11. Liu, Q, Liu, R, Wang, Z, & Zhang, Y. (2019). Simulation and analysis of device positioning in 5G ultra-dense network. IEEE international wireless communications & mobile computing conference (IWCMC).

  12. Liu, J., Chen, Q., & Sherali, H. D. (2012). Algorithm design for femtocell base station placement in commercial building environments. In INFOCOM, IEEE.

  13. Han, K., Choi, Y., Kim, D., Na, M., Choi, S., & Han, K. (2009). Optimization of femtocell network configuration under interference constraints. In WiOPT 2009. IEEE.

  14. Tahalani, M., Sathya, V., Ramamurthy, A., Suhas, U., Giluka, M. K., & Tamma, B.R. (2014). Optimal placement of femto base stations in enterprise femtocell networks. In 2014 IEEE international conference on advanced networks and telecommuni- cations systems (ANTS). IEEE

  15. Sathya, V., Ramamurthy, A., Kumar, S. S., & Tamma, B. R. (2016). On improving sinr in lte hetnets with d2d relays. Computer Communications, 83, 27–44.

    Article  Google Scholar 

  16. Afaqui, M. S., Garcia-Villegas, E., & Lopez-Aguilera, E. (2017). IEEE 802.11 ax: Challenges and requirements for future high efficiency Wi-Fi. IEEE Wireless Communications, 24(3), 130–137.

    Article  Google Scholar 

  17. Khorov, E., Kiryanov, A., Lyakhov, A., & Bianchi, G. (2018). A tutorial on IEEE 802.11 ax high efficiency WLANS. IEEE Communications Surveys & Tutorials., 21(1), 197–216.

    Article  Google Scholar 

  18. Bellalta, B. (2016). IEEE 802.11 ax: High-efficiency WLANS. IEEE Wireless Communications, 23(1), 38–46.

    Article  Google Scholar 

  19. Andrews, M., Capdevielle, V., Feki, A., & Gupta, P. (2010). Autonomous spectrum sharing for mixed LTE femto and macro cells deployments. In Proceedings of IEEE INFOCOM conference on computer communications workshops.

  20. Meghanathan, N. (XXXX). textitStrategic Innovations and Interdisciplinary Perspectives in Telecommunications and Networking. Jackson State University, USA.

  21. Federal Communications Commission. (2020). Notice of proposed rule making on unlicensed use of the 6 GHz band. https://docs.fcc.gov/public/attachments/DOC-363490A1.pdf.

  22. LTE-U Forum. http://www.lteuforum.org.

  23. 3GPP Release 14 Specification. http://www.3gpp.org/rele-14/.

  24. Merhnoush, M., Sathya, V., Roy, S., & Ghosh, M. (2018). Analytical modeling of Wi-Fi and LTE-LAA coexistence: Throughput and impact of energy detection threshold. IEEE Transactions on Networking., 26(4), 1990–2003.

    Article  Google Scholar 

  25. Mehrnoush, M., Roy, S., Sathya, V., & Ghosh, M. (2018). On the fairness of Wi-Fi and LTE-LAA coexistence. IEEE Transactions on Cognitive Communications and Networking., 4(4), 735–748.

    Article  Google Scholar 

  26. He, H., et al. (2016). Proportional fairness-based resource allocation for LTE-U coexisting with Wi-Fi. IEEE Access, 5, 4720–4731.

    Article  Google Scholar 

  27. Bejerano, Y., et al. (2004). Fairness and load balancing in wireless LANs using association control. International conference on Mobile computing and networking (pp. 315–329).

  28. Katila, C. J., et al. (2017). Neighbors-aware proportional fair scheduling for future wireless networks with mixed MAC protocols. EURASIP Journal on Wireless Communications and Networking, 1, 1–12.

    Google Scholar 

  29. Li, L, et al. (2008). Proportional fairness in multirate wireless LANs. IEEE INFOCOM (pp. 1004–1012).

  30. Ge, X., Tu, S., Mao, G., Wang, C., & Han, T. (2016). 5g ultra-dense cellular networks. IEEE Wireless Communications, 23, 72–79.

    Article  Google Scholar 

  31. Muirhead, D., Imran, M. A., & Arshad, K. (2015). Insights and approaches for low-complexity 5g small-cell base-station design for indoor dense networks. IEEE Access, 3, 1562–1572.

    Article  Google Scholar 

  32. 3GPP Releases. http://www.3gpp.org/releases.

  33. Chandrasekhar, V., & Andrews, J. (2009). Spectrum allocation in tiered cellular networks. IEEE Transactions on Communications, 57(10), 3059–3068.

    Article  Google Scholar 

  34. Yoon, J., Arslan, M. Y., Sundaresan, K., Krishnamurthy, S. V., & Banerjee, S. (2012). A distributed resource management framework for interference mitigation in OFDMA femtocell networks. In Proceedings of ACM MOBIHOC 2012.

  35. Lee, P., Lee, T., Jeong, J., & Shin, J. (2010). Interference management in LTE femtocell systems using fractional frequency reuse. In Proceedings of ICACT 2010 (Vol. 2). IEEE.

  36. Hamza, A. S., Khalifa, S. S., Hamza, H. S., & Elsayed, K. (2013). A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks. IEEE Communications Surveys & Tutorials, 15(4), 1642–1670.

    Article  Google Scholar 

  37. Lopez-Porez, D.,& Claussen, H. (June 2014). Improved frequency reuse through sector offset configuration in LTE heterogeneous networks. In Proceedings of IEEE ICC.

  38. Elfadil, H. E. E. O. M., Ali, M. A. I.,& Abas, M. (March 2015) Fractional frequency reuse in LTE networks. In Proceedings of WSWAN.

  39. Saquib, N., Hossain, E., & Kim, D. I. (April 2013). Fractional frequency reuse for interference management in LTE-advanced HetNets. IEEE Wireless Communications, 20, 113–122.

    Article  Google Scholar 

  40. Sathya, V., Gudivada, H. V., Narayanam, H., Krishna, B. M., & Tamma, B. R. (October 2013). Enhanced distributed resource allocation and interference management in LTE femtocell networks. In Proceedings of IEEE WiMob. Lyon, France.

  41. Pan, C., Yin, C., Beaulieu, N. C., & Yu, J. (2018). Distributed resource allocation in SDCN-based heterogeneous networks utilizing licensed and unlicensed bands. IEEE Transactions on Wireless Communications, 17, 711–721.

    Article  Google Scholar 

  42. Yang, C., Li, J., Li, H., Sheng, M., Liu, Q., Liu, W.,& Li, Y. (May 2013). Multi-resource allocation for LTE networks: Joint-optimality and distributed algorithm. In Proceedings of ICT 2013.

  43. Chen, J., Jia, J., Wen, Y., Liu, J. et al. (2009). A genetic approach to channel assignment for multi-radio multi-channel wireless mesh networks. In Proceedings of the first ACM/SIGEVO summit on genetic and evolutionary computation (pp. 39–46). ACM.

  44. Doraghinejad, M., Nezamabadi-Pour, H., & Mahani, A. (2014). Channel assignment in multi-radio wireless mesh networks using an improved gravitational search algorithm. Journal of Network and Computer Applications, 38, 163–171.

    Article  Google Scholar 

  45. Gunes, M., Sorges, U.,& Bouazizi, I. (2002). Ara-the ant-colony based routing algorithm for MANETS. In International conference on proceedings of parallel processing workshops, 2002 (pp. 79–85). IEEE.

  46. Tan, L., & Zhang, Y. (2015). Optimal resource allocation with principle of equality and diminishing marginal utility in wireless networks. Wireless Personal Communications, 84(1), 671–693.

    Article  Google Scholar 

  47. Giddens, A., Duneier, M., Appelbaum, R. P., & Carr, D. S. (2016). Introduction to sociology. New York: WW Norton.

    Google Scholar 

  48. Burt, R. S. (2009). Structural holes: The social structure of competition. Cambridge: Harvard University Press.

    Google Scholar 

  49. Wang, D., Liu, E., Liu, D., Qu, X., Ma, R., Wang, P., et al. (2015). Rsh: A link-addition strategy for capacity enhancement in scale-free networks. IEEE Communications Letters, 19(12), 2110–2113.

    Article  Google Scholar 

  50. Ferscha, A., Farrahi, K., van den Hoven, J., Hales, D., Nowak, A., Lukowicz, P., et al. (2012). Socio-inspired ICT. The European Physical Journal Special Topics, 214(1), 401–434.

    Article  Google Scholar 

  51. Ojog, C.-O., Marin, R.-C., Ciobanu, R.-I., & Dobre, C. (2016). Multi-criteria optimization of wireless connectivity over sparse networks. Computer Networks, 111, 120–128.

    Article  Google Scholar 

  52. Kang, S., Lee, S., Ahn, S., & An, S. (2012). Energy efficient topology control based on sociological cluster in wireless sensor networks. KSII Transactions on Internet and Information Systems, 6(1), 339–358.

    Google Scholar 

  53. Antoniadis, P., Le Grand, B., Satsiou, A., Tassiulas, L., Aguiar, R. L., Barraca, J. P., et al. (2008). Community building over neighborhood wireless mesh networks. IEEE Technology and Society Magazine, 27(1), 48–56.

    Article  Google Scholar 

  54. Ding, L., Shi, P.,& Liu, B. (2010). The clustering of internet, internet of things and social network. In Proceedings of IEEE knowledge acquisition and modeling.

  55. Kala, S. M., Sathya, V., Reddy, M. P. K., Lala, B., & Tamma, B. R. (2019). A Socio-inspired calm approach to channel assignment performance prediction and WMN capacity estimation. Journal of Network and Computer Applications, 125, 42–66.

    Article  Google Scholar 

  56. Ashby, W. R. (1961). An introduction to cybernetics. Boca Raton: Chapman & Hall Ltd.

    MATH  Google Scholar 

  57. Kala, S. M., Sathya, V., Reddy, M., & Tamma, B. R. (2018). icalm: A topology agnostic Socio-inspired channel assignment performance prediction metric for mesh networks. In Proceedings of the 24th annual international conference on mobile computing and networking (pp. 702–704). ACM.

  58. Sharp, I., & Yu, K. (2013). Enhanced least-squares positioning algorithm for indoor positioning. IEEE Transactions on Mobile Computing, 12(8), 1640–1650.

    Article  Google Scholar 

  59. Arrow, K. J. (1969). The organization of economic activity: issues pertinent to the choice of market versus nonmarket allocation. The Analysis and Evaluation of Public expenditure: The PPB system, 1, 59–73.

    Google Scholar 

  60. Shaoyi, X, Ruitao, L, & Qinghai, Y. (2018). Improved genetic algorithm based intelligent resource allocation in 5G Ultra Dense networks. In IEEE wireless communications and networking conference (WCNC).

  61. Yip, M., Shadbolt, N., Tiropanis, T., & Webber, C. (2012). The digital underground economy: a social network approach to understanding cybercrime.

  62. Durkheim, E. (1951). Suicide: a study in sociology [1897] Translated by JA Spaulding and G. Simpson (Glencoe, Illinois: The Free Press, 1951).

  63. Durkheim, E. (2014). The rules of sociological method: and selected texts on sociology and its method. New York: Simon and Schuster.

    Google Scholar 

  64. Vienna LTE Simulator: https://www.nt.tuwien.ac.at/research/mobile-communications/vccs/vienna-lte-a-simulators/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanlin Sathya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathya, V., Kala, S.M., Bhupeshraj, S. et al. RAPTAP: a socio-inspired approach to resource allocation and interference management in dense small cells. Wireless Netw 27, 441–464 (2021). https://doi.org/10.1007/s11276-020-02460-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02460-7

Keywords

Navigation