Skip to main content
Log in

Modeling and analysis of distributed millimeter wave massive MIMO system using Poisson point processes

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper studies a downlink distributed millimeter wave massive multi-input multi-output (D-MIMO) system with radio access units (RAUs) and user equipments (UEs) following Poisson point processes (PPPs). Assuming the fading channel is composite, a hybrid precoding algorithm leveraging antenna array response vectors is applied in the D-MIMO system. First, the effects of the relationship between the numbers of RAUs and UEs on system behaviors are discussed. Two RAU allocation algorithms that can realize either the RAU allocation or user scheduling based on minimum distance (Distance-based) and maximum signal-to-interference-plus-noise-ratio (SINR) (SINR-based) are proposed, respectively. Then, the lower bound of the asymptotic average spectral efficiency for the D-MIMO system using Distance-based RAU allocation algorithm is analyzed. Finally, numerical results are provided to assess analytical results and evaluate the impacts of RAU layouts, the densities of RAUs and UEs and the number of available radio frequency chains in each RAU on system performance. It is shown that, for highly-populated scenarios, the PPP-distributed RAU layout is more suitable for the D-MIMO system than the circular RAU layout, and the Distance-based scheme outperforms the SINR-based solution while providing more stable quality of service and requiring less iteration times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  2. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 1, 335–349.

    Article  Google Scholar 

  3. Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015). A survey of millimeter wave communications (mm Wave) for 5G: Opportunities and challenges. Wireless Networks, 21(8), 2657–2676.

    Article  Google Scholar 

  4. Rappaport, T. S., Sun, S., & Shafi, M. (2017). Investigation and comparison of 3GPP and NYUSIM channel models for 5G wireless communications. In 2017 IEEE 86th vehicular technology conference (VTC-Fall) (pp. 1–5). IEEE.

  5. Nguyen, S. L. H., Haneda, K., Jarvelainen, J., Karttunen, A., & Putkonen, J. (2015). On the mutual orthogonality of millimeter-wave massive MIMO channels. In 2015 IEEE 81st vehicular technology conference (VTC Spring) (pp. 1–5). IEEE.

  6. Checko, A., Christiansen, H. L., Yan, Y., Scolari, L., Kardaras, G., Berger, M. S., et al. (2014). Cloud RAN for mobile networks: A technology overview. IEEE Communications Surveys & Tutorials, 17(1), 405–426.

    Article  Google Scholar 

  7. Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850.

    Article  Google Scholar 

  8. Li, J., Yue, D., & Sun, Y. (2018). Performance analysis of millimeter wave massive MIMO systems in centralized and distributed dchemes. IEEE Access, 6, 75482–75494.

    Article  Google Scholar 

  9. Kusaladharma, S., Zhu, W. P., & Ajib, W. (2019). Stochastic geometry-based modeling and analysis of massive MIMO-enabled millimeter wave cellular networks. IEEE Transactions on Communications, 67(1), 288–301.

    Article  Google Scholar 

  10. Kulkarni, M. N., Ghosh, A., & Andrews, J. G. (2016). A comparison of MIMO techniques in downlink millimeter wave cellular networks with hybrid beamforming. IEEE Transactions on Communications, 64(5), 1952–1967.

    Article  Google Scholar 

  11. Kolawole, O. Y., Vuppala, S., & Ratnarajah, T. (2018). Multiuser millimeter wave cloud radio access networks with hybrid precoding. IEEE Systems Journal, 12(4), 3661–3672.

    Article  Google Scholar 

  12. Han, S., Chih-Lin, I., Xu, Z., & Rowell, C. (2015). Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Communications Magazine, 53(1), 186–194.

    Article  Google Scholar 

  13. El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.

    Article  Google Scholar 

  14. Li, N., Wei, Z., Yang, H., Zhang, X., & Yang, D. (2017). Hybrid precoding for mmWave massive MIMO systems with partially connected structure. IEEE Access, 5, 15142–15151.

    Article  Google Scholar 

  15. Zhang, D., Wang, Y., Li, X., & Xiang, W. (2017). Hybridly connected structure for hybrid beamforming in mmWave massive MIMO systems. IEEE Transactions on Communications, 66(2), 662–674.

    Article  Google Scholar 

  16. He, H., Xue, J., Ratnarajah, T., & Sellathurai, M. (2016). Performance analysis of millimeter wave cloud radio access networks. In Proceeding of IEEE global communications conference (GLOBECOM) (pp. 1–6). IEEE.

  17. Yue, D., Xu, S., & Nguyen, H. (2019). Diversity gain of millimeter-wave massive MIMO systems with distributed antenna arrays. EURASIP Journal on Wireless Communications and Networking, 54.

  18. Yue, D., & Nguyen, H. (2019). Multiplexing gain analysis of mmWave massive MIMO systems with distributed antenna subarrays. IEEE Transactions on Vehicular Technology, 68(11), 11368–11373.

    Article  Google Scholar 

  19. Sedighi, S., & Ayanoglu, E. (2019). Bit-interleaved coded multiple beamforming in millimeter-wave massive MIMO systems. In International conference on communications (ICC) (pp. 1–6). IEEE.

  20. Kamga, G. N., Xia, M., & Aïssa, S. (2016). Spectral-efficiency analysis of massive MIMO systems in centralized and distributed schemes. IEEE Transactions on Communications, 64(5), 1930–1941.

    Article  Google Scholar 

  21. Saleh, A. A., & Valenzuela, R. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications, 5(2), 128–137.

    Article  Google Scholar 

  22. Samimi, M. K., & Rappaport, T. S. (2015). Statistical channel model with multi-frequency and arbitrary antenna beamwidth for millimeter-wave outdoor communications. In 2015 IEEE Globecom workshops (GC Wkshps) (pp. 1–7). IEEE.

  23. Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056.

    Article  Google Scholar 

  24. Liu, A., & Lau, V. K. (2014). Joint power and antenna selection optimization in large cloud radio access networks. IEEE Transactions on Signal Processing, 62(5), 1319–1328.

    Article  MathSciNet  Google Scholar 

  25. Hochwald, B. M., & Maretta, T. L. (2001). Adapting a downlink array from uplink measurements. IEEE Transactions on Signal Processing, 49(3), 642–653.

    Article  Google Scholar 

  26. Zhou, S., Xu, W., Zhang, H., & You, X. (2017). Hybrid precoding for millimeter wave massive MIMO with analog combining. In 2017 9th international conference on wireless communications and signal processing (WCSP) (pp. 1–5). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian-Wu Yue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yue, DW. Modeling and analysis of distributed millimeter wave massive MIMO system using Poisson point processes. Wireless Netw 26, 6125–6138 (2020). https://doi.org/10.1007/s11276-020-02429-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02429-6

Keywords

Navigation